Dear Task Force Member
As requested at the first meeting of the Cherokee County Task Force in Galena, Kansas, I am sending each task force member a copy of the Geoloqical Survey's report on potential mining-related hazards in the Kansas portion of the TriState Mining District

The copied report is complete except for the plates (larqe maps) usually included in the back cover envelope They were too larqe to Xerox completely, so only the Galena portion of the Baxter Springs Quadrangle was reproduced for your information, since this is the area of immediate concern

Please call if you have any questions

$1: 1: 41$

A Study of Stability Problems and Hazard Evaluation of the Kansas Portion of The Trı-State Mıning Area

By

J R McCauley, L L Brady, and F W Wilson Kansas Geological Survey Open-File Report,83-2

A STUDY OF STABILITY PROBLEMS AND HAZARD EVALUATION OF THE KANSAS PORTION OF THE TRI-STATE MIIING AREA
 C) $\quad 0 \quad 31$
 * - \quad aral Sulver The Universit) of Kansas

FOREWORD

Th s report was prepared by the Kansas Geological Sur rey Environmental (eology and Geophysics Section Lawrence Kansas under USBM Contract number J0100131 The contract was inltiated under the Minerals Environmental Technology Research Program It was admınistered under the technical direction of the Rolla Research Center with Naldemar M Dressel actıng as Technical Project Officer Doyne W Teets was the contrac administrator for the Bureau of Mines This report is a summary of the work recently completed as a part of this contract during the per lod September 19, 1980 to January 281983 This report was submıtted by the authors on January 281983

CONTENTS

Page
Acknowledgments 8
Abstract 9
Introduction 10
Purpcse of Study 10
Objectives and Scope of Study 10
Information Sources and Study Methods 11
Mine Maps 11
Aerlal Photography 11
Field Work 12
Personal Interviews 13
Description of Study Area 13
The Ozark Plateau 15
The Cherokee Lowlands 17
Drainage 18
General Mining, Milling and Economic Geology 18
Reserves of Lead and Zinc 22
Land-Ownershıp Patterns in the Kansas Portion of the Tru-State Mining District 24
Kansas Laws 24
Federal Laws 25
Description of Mining Areas 27
Galena Area 27
Badger-Peacock Area 28
Crestline Area 28
Lawton Area 28
Waco Area 28
Baxter Springs Area 29
Treece Area 29
Results 31
Plate I - Underground Mines and Shafts 31
Plate II - Open Shafts Pits and Subsidences 33
Waco 36
Lawton 36
Badger-Peacock 36
Crestline 37
[reece 37
Baxter Springs 40
(alena 45
Plate III - Mine and Mill Waste 52
Suggested Methods for Closing Mine Openings 56
References 60
Appendix A - Kansas statutes pertalning to abandoned mines 62
Appendix B - Section maps of Galena area showing underground work- ings and hazardous mine openings 64
Appendix C 80
Page
TABLES
1 Generalized columnar section of the surficial rocks in the Tri- State district of Kansas 16
2 Quantaty of material treated from Kansas and average recovery of zinc and lead concentrates during 1911-1945 20
3 Summary of hazards in the Kansas Tri-State mining areas 34
4 Mining-affected areas in the Kansas Trı-State 34
APPENDIX C TABLES
C-1 Open mine shafts, adits and pits 81
c-2 Subsidence events 149
C-3 Chat piles and tailings ponds 182
ILLUSTRATIONS
1 Location map of Kansas Tri-State study area showing USGS quad- rangles 14
2 Cumulative production of recoverable lead and zinc from mines in Kan as 19
3 Collapsed shaft No 8, east of Crestline Kansas 38
4 Collapsed shaft No 2 east of Crestline, Kansas 38
5 View rom inside surface of collapse No 1 along Tar Creek, nori hwest of Treece Kansas 39
6 Surfare collapse No 2 northwest of Treece Kansas 39
7 Collapsed shaft No 8 north of Treece, Kansas 41
8 Open uncollapsed shaft No 6 north of Treece, Kansas 41
9 Surfare collapse No 10 southwest of Baxter Springs, Kansas 43
10 Open uncollapsed shaft No 3, northwest of Baxter Springs, Kan as 43
11 Collapsing shaft No 10 southwest of Baxter Springs Kansas 44
12 Collapsed shaft No 3 southwest of Baxter Springs Kansas 44
13 Overv ew of Southside Mıne area in Galena, Kansas 46
14 Surface collapse No 71 in Southside Mine area 46
15 Surface collapse no 75 and mıne opening Galena Kansas 47
16 Entrance to underground mane in surface collapse No 1 Galena Kan as 47
17 Flooded open pıt No 7 in Short Creek valley Galena, Kansas 49
18 Adit No 79 southwest of Galena Kansas 49
19 Typiccl collapsed shaft in Galena Kansas area 51
20 Collafsed shaft and shallow mıne room in Galena Kansas 51
21 Overview of chat pile remnants west of Treece Kansas 53
22 Large tallıngs pond No 6 used in chat reclaiming operat on west of Baxter Springs Kansas 53
APPENDIX B ILLUSTRATIONS
B-1 Knowr extent of underground workings in section 11 65
B-2 Knowr extent of underground workings in section 13 66
B-3 Known extent of underground workings in section 14 67

Page

B-4 Known extent of underground workings in section 15 68
B-5 Known extent of underground workings in section 22 69
B-6 Known extent of underground workings in section 23 70
B-7 Known extent of underground workings in section 27 71
B-8 Hazirdous mine openings in section 11 72
B-9 Hazirdous mine openings in section 13 73
B-10 Hazirdous shafts and open pits in section 14 74
B-ll Suriace collapses in section 14 75
B-12 Hazirdous mine openings in section 15 76
B-13 Hazirdous mine openings in section 22 77
B-14 Hazirdous mine openings in section 23 78
B-15 Haz irdous mine openings in section 27 79
PLATES
I-A Unclerground mines and shafts Crestline Quadrangle kansas (In Pocket)
I-B Uncerground mines and shafts, Neutral QuadrangleKans 3(In Pocket)
I-C Uncerground mines and shafts Baxter Springs Quadrang ekansas(In Pocket)
II-A Open shafts, pits, and subsidences, CrestlineGuadrangle Kansas
II-B Open shafts, pits and subsidences Neutral Quadrangle Kansas
II-C Open shafts pits and subsidences Baxter SpringsQuadrangle, Kansas
III-A Mine and mill waste, Crestline Quadrangle Kansas (In Pocket)(In Pocket)
III-B Mine and mill waste Neutral Quadrangle, Kansas (In Pocket)
III-C Mine and mill waste Baxter Springs Quadrangle Kansa (In Pocket)

The contributions of Carolyn LaFrance who assisted 1 r the field work Esther Price who typed the manuscript and Darrell Irrew who drafted and scribed the plates and figures and researched the many mine maps used in this study, are greatly appreciated

```
STUDY OF STABILITY PROBLEMS AND HAZARD EVALUATION
OF THE KANSAS PORTION OF THE TRI-STATE MINING AREA
```

by
rames R McCauley, ${ }^{1}$ Lawrence L Brady, ${ }^{2}$ Frank W Wılson ${ }^{3}$

[^0]
INTRODUCTION

Purpose of Study

The discovery of black Jack on the Cook Forty in Galena in 1870 and the zlosing of the Swalley mine near Baxter Springs in 1970 marked the beginning and end of a hundred years of lead and zinc mining in the Kansas pirtion of the Tri-State maning district During much of this time the Tri-State district of southwestern Missouri southeastern Kansas, and northeastern Oklahoma was one of the world s major producers of lead and zinc Today the mines are a thing of the past however their ve tiges are very much a part of everyday life for residents of this are ${ }^{\text {l }}$ Whereas the dangers for miners ended with the closing of the last min the hazards faced by those living above ground continue to this day Waste piles, mine shafts and collapsed mınes dot the landscape of the old Tri-State district, and additional areas overlie mines of unknown extent and safety Over the years mine collapses have caused estensive property damage and open mines and other mine hazards have clatmed human lives In an attempt to alleviate these hazards the resident of extreme southeastern Kansas and adjacent parts of Missourl and Oklahoma sought federal help in the late 1970's and in 1979 congressmen Whittaker of Kansas Taylor of Missouri and Synar of Oklahoma expressed the concerns of their constituents in Washington $D C$ and requested the recommendations of the $U S$ Bureau of Mines Before taking corrective action the Bureau of Mines proposed a thorough study of the T i-State mining district to 1 dentify all mıned areas and minerelated hazards and to make recommendations for remedial action The Bureau of Mines chose cooperative agreements between itself and the state geological surveys of Kansas Missourı and Oklahoma to accomplish this tasl This is a final report on the results of the Kansas portion of this tudy

Objectives and Scope of Study

The objectives put forward for this study were (1) to compile on a single set or series of maps the location and extent of jast-mining activitics and the resulting surface effects (underground a 2 open-pit mine worlings shafts ground subsidence accumulations of mine waste and talling ponds) (2) to identify hazardous areas with po-entlal for future dimage to people or property and (3) to consider methods for providinc protection of the public for existing and potentially hazardous conditions

To meet these objectives three sets of maps using U, Geological Survey $71 / 2$ minute quadrangles as bases have been prepared for the study area and are included in this report Plate I Undejground Mines and Shafts shows the known extent of underground mine worlings as well as the lccation of all known mine shafts Plate II Open Mine Shafts Pits anc Subsidences ls essentially a mine hazards map and shows all open or collapsed mine shafts all open-pit workings as we 1 as the location, and extent of mine cave-ins and subsidences plate III dine and Mill Waste (Piles and Ponds) depicts the remaining wa te piles in the area as well as the extent of former waste piles which have been
quarried or reclalmed Taılıngs ponds are also shown To accompany these maps are tabulations of pertinent data describing the nature location condition dimensions and suggested remedial action for many of the mine features mapped Tabulations include Table C-l Open Mine Shafts and Pits Table C-2, Subsidence Events and Table C-3 Mine and Mill Waste Finally methods are proposed for ameliorating the hazards which exist in the study area

Information Sources and Study Methods

Mıne Maps

To compile the large amount of data required by this study several sources of information were used Since drilling and instrumented surveys vere not a part of this study information concerning the location and extent of underground workings had to be taken from existing mane map, Some of those maps were privately owned or belonged to engıneering concerns, a number were on file at the Kansas Geological Survey in the Mineral Resources Section still others were found in the published reports and articles concerning the Tri-State district

An , xtensive cataloging program, conducted by the $U S$ Bureau of Mines and reported by Brichta (1) compiled exploration drilling records and mine workings maps for the Tri-State district Mıcrofilm copies of this information were supplied by the Bureau to this investigation The maps showing mine workings were compiled on a half-section jasis and covered most of the Kansas mining areas These maps were extremely helpful to this study The $U S$ Bureau of Mines formerly maintained an office in|the Tri-State district which contained a large number of mine maps and records produced by mining companies These maps, which are now housid in the Spıva Library at Missouri Southern State IJniversity in Jopinn provided another valuable source of information Included in this set of maps were a number from the Galena area which were not found among the other map sources However maps are still lacki 19 for some mining aleas particularly those in and around Galena

All the mane maps had to be transferred and plotted on new maps having a scale of 124000 This was accomplished by the u e of a Bausch and Lomb zoom transfer scope (Model ZTH-4HP) In adiltion the maps held at Missourı Southern State University could not b removed from the premises These maps were traced photographicall, reduced and then transferred to project maps

Aerıal Photography

Another major source of information for this study was aerial photografhy Photos dating back to 1938 were used in this tudy to map surface effects of mining and mine hazards and to trace the r development over the years In all four dates of aerial photography were used 103819501973 and 1981 The 1938 and 1950 photo were black and white with a scale of 124,000 and were acquired by the Agricultural Stabilization and Conservation Service of the $U S$ Department of Agriculture The 1950 photos were on hand at the Kansas Gecilogical

Survey however the 1938 photos had to be procured from the National Archive and Records Service in Washington D C The 1973 photos were color-infrared transparencles acquired by high-flying NASA research alrcraft at a scale of about 125000 These were purcha ed from the Earth Resources Observation Systems (EROS) of the U S Geo ogacal Survey in Siour Falls South Dakota In 1981 color photography was acquired especially for this study under subcontract with Anılas Inc of Salına Kansas This photography was flown in February at a time when the deciduous trees in the study area were without their leave thus allowing the search for mıne hazards in forested areas The search for hazards was also alded by the large scale of this photography in comparison with the other sets of photos Flying at an altitude of about 1500 meters (5000 feet), color transparencies were acquired having a scale of 110,800 The coverage of this photography is outinned in Figure 1

All of the aerial photography used in this study was stereo-coverage and was interpreted using a Bausch and Lomb zoom 95 stereoscope together with a Richards 924-2XY light table Mining features were recorded on clear mylar transparencies and later transferred to the 124000 project maps The aerial photography was useful for mapping all of tie surface effects of mining under investigation in this study The 1938 and 1950 black and white photography was useful for mapping chat piles and tallings ponds which are easily interpreted because of their si e and because many were still intact at the time of photography Since many mines were still in operation on these two sets of photos specially those from 1938 mine shafts could be lorated by identify ing hoisting structures over their openings Mine ave-ins are also visible on the 1938 and 1950 photography These sets of photos together witn the later photography were used to place time frames on the occur rence of the large mine collapses The scale, resolution and--in the case of the 1938 photos--quallty, were such that the black and whit ϵ photography could not be used to map small hazard such as open mint shafts and small areas of cave-in and subsidence Likewise the 1973 high-altitude photography, because of its large scile was useful prımaııly for mapping and datıng large mıne cave-ıns

The 1981 photography proved to be invaluable in detecting minerelated hazards as they now exist in the study area The escellent resolution and sharpness of this photography together with its larger scale allowed the mapping of even the smallest mine hazards a high resolution zoom stereoscope aided in the identification of cpen uncollapsed mine shafts as small as 12 meters (4 feet) x 12 meters (4 feet) even when viewed through a canopy of trees

Field Work

To gain information on present conditions dimensions protective efforts and other tabulated information each mine hazard was visited in the fiəld Required information was recorded and in many instances color slides and black and white photos were taken Many chat piles and tailıngs ponds were likewise inspected

To ald in the field work interpretive overlays made on the 1981 photography were used to make field maps of each square-mi e section In addition to showing the waste piles and ponds mine shaits and caveins taken from the overlays roads streams fences abandoned rail lines, and other features useful in locating mine hazards were placed on these maps In this way hazards could be found and inspected without needless searching Because of the intense mining activity in the Galena area prints of the 1981 photo coverage were made to assist in this part of the field work A ground survey of mine hazas ds in a long orphaned mining district such as this study area unalded by aerial photography, would have been time-consuming and difficult due to the disrupted landscape the mining has produced and the vegetative overgrowth that has flourished since mining was abandoned

Personal Interviews

Additional information concerning mine hazards was obtained from personal contacts with area residents landowners and city officials They were particularly helpful in providing the history of some mine cave-ins and in describing past cave-ins that have since been corrected and are no longer apparent Personal interviews with some landowners provided information on methods used to reclaim their land and close mine shafts In some instances former miners told of the conditions in underground mines and how some cave-ins occurred However discretion must be used in accepting stories relating to the underground mining in this area since much of what is related results from a strong oral traditicn rather than actual experience in the mines For instance the notion that all the mines from northeast of Joplin Missoull, southwest to near Mıamı Oklahoma, are interconnected is still held by some residents More than once stories were related of men enterinc mines in Missouri and emerging in Oklahoma or vice-versa including one variation that described the trip being made by row boat

Description of Study Area

The study area for this investigation 1 s shown in figure 1 and includes virtually all of the Tri-State mining in the State of Kansas This study area is composed of the following U S Geologicıl Survey 75 minute quadrangles in Kansas Crestline Baxter Springs ind Neutral as well as the Kansas portions of Carl Junction Mıssourj-Kansas Joplin West Missouri-Kansas Peoria Oklahoma-Kansas Picher, OklahomaKansas and Mıamı Northwest Oklahoma-Kansas

The study area in Figure 1 covers about 465 square kjlometers (180 square miles) however, virtually all of the Tri-State minjng actavity is contained in the 310 square kilometers (120 square mile) covered by the aerial photography acquired for this project The stucly area includes portions of two physiographic provinces as defined by Schoewe (14 p 279-280) which are roughly separated by the Spring River To the east lles a small portion of the Ozark Plateau Province which occuples part of northeastern Oklahoma, northern Arkansas, and southern Missouri The Cherokee Lowlands portion of the Interior Plains make up the remaining part of the study area west of the Spring River

The Ozark Plateau Province in Kansas is developed on cherty limestones of Mississippian age These are the oldest exposed rocks in the state of Kansas and contalned the deposits of lead and zinc which were extensively mined in the Tri-State district (Table 1)

This region contains the highest elevation in the stucly area and more rellef than the Cherokee Lowlands Beng a plateau the interstream uplands are generally flat but have a slight slope to the northwest whlch approximates the regional dip of the rocks The stream valleys often have steep sides and gravel-filled bottoms Local rellef exceeds 50 meters (170 feet) along Shoal Creek south of Galena The overall relıef of the study area $1 s$ over 82 meters (270 feet) ranging from the highest point in the study area 317 meters (1040 feet) near the thre e-corners area where Kansas adjoins Missourl and Oklahoma down to 235 moters (770 feet) where the Spring River leaves the state 8 kilometers (5 miles) to the west

Much of the Ozark Plateau portion of the study area 15 mantled by residual cherty gravel that has resulted from the weathering of the Mississippian limestones The solls of the area are often thin and rocky \quad hhese together with the numerous steep slopes, combine to make much of this area unsultable for cropland Declduous hardwood forests cover mo t of the hillsides while the uplands contain largi clearings devoted to livestock grazing Cropland is primarily restric ted to the valley floors of Shoal Creek and the Spring River

Three communities are located in this part of the studs area Riverton and Lowell are two unincorporated villages located near the confluence of the Spring River and Shoal Creek The city of Galena is located to the east along the Missouri state line on highways U S 66 and Kansas 26 The city $1 s$ divided by westward-flowing Short Creek The portion of town north of the creek was formerly Empire (ity an early rival to the young city of Galena

Galena and Empire City were born out of the rush to exploit the rich diggings found along Short Creek in the 1870 s and grew quickly as additional ore deposits many occurring close to the surface were discovered By 1900 shortly after the peak in mining around the city of Galena, it had a population of 10155 (3 p 61) Galena was also an important smelting center having a large smelter that operated into the mid-1970's Today lacking any mıning industry Galena ls largely a residential community of 3588 ($1980 \mathrm{U} S$ census) However 1 ts history as a mining center is still very much in evidence Much of the city and adjoining areas are undermined and pockmarked by abandoned mine shafts prospects and mine cave-ins It is possible just by crossing a street or stepping out of a backyard to go from a residential neighborhood to a chat and boulder-strewn wasteland containing all the attendait hazards assoclated with abandoned underground manes

TABLE 1 - Generalized columnar section of the surficial rocks in the Tri-State district of Kansas (l6 p 3)

$S_{1} \leq t 0 m$	Sexres	Slaye	$\begin{gathered} \text { Geolog } 1 \mathrm{C} \\ \text { Un1t } \end{gathered}$	Avg _nıckness m (ft)	Description-
Pennsylvanıan	Middle Pennsylvanıan	Desmolnesıan	Krebs Formation	$\begin{gathered} 70 \\ (225) \end{gathered}$	Shale light- to dark-gray and fine- to medium-grained sandstone contains coal, underclay, siltstone and some limestone locally
Һூ Mıssıssippıan	Upper Mıssissippian	Chesteran	Undifferentıated rocks of Chesteran age	$\begin{gathered} 35 \\ (120) \end{gathered}$	Limestone shaly and calcareous shale contains some oolitic limestone and sandy shale
		Meramecian	Warsaw Lımestone	$\begin{gathered} 35 \\ (120) \end{gathered}$	Limestone, crinoldal contains much gray chert Base marked by glau-conite-rich layer known locally as the J-bed Contains deposits of lead and zunc of commercial value
	Lower Mıssissippian	Osagıan	Keokuk Limestone	$\begin{gathered} 40 \\ (130) \end{gathered}$	Limestone medium to coarsely crystalline bluish-gray and gray chert contains oolitic limestone near top Cherty parts weather to characteristic reddısh-brown color Contalns deposits of lead and zinc of commercial value
			Fern Glen Limestone	$\begin{gathered} 51 \\ (170) \end{gathered}$	Limestone Reeds Spring Limestone Member (upper unlt) is cherty finely crystalline, bluish-gray Contains deposits of lead and zinc of commercsã value S_{l} Jue himcstone Member (lower unit) is crinoldal dolomitic in part green

The portion of the study area west of the Spring River in the Cherokee Lowlands contrasts sharply with the Ozark Plateau to the east These lowlands are essentially an erosional plain developed on the soft shales silts and sandstones of the Cherokee Group (14 p 231) which is Pennsylvanian in age These rocks lie unconformably on the Mississippian rocks below The lowermost formation of the Cherokee Group the Krebs Formation (Table 1), occurs throughout the Cherokee Lowlands portion of the study area This region is physiographically more subdued than the Ozark Plateau, having gentle slopes and shallow stream valleys The only notable areas of topographic rellef are isolated sandstone hills such as Blue Mound east of Treece which stand out as erosional remnants above the surrounding terrain The elevation of Blue Mound is 295 meters (970 feet) This is the highest point in the study area outside of the Ozark Plateau portion

The fine-grained friable rocks of the Krebs Formation have weathered to form deep fertile solls This together with gentle welldrained topography, results in much arable land in this part of the study ari a^{a} Areas of timber are restricted to the slopes of erosional remnants such as Blue Mound and the courses of the larger streams

Five communitles are located in this part of the study area Crestlint and Lawton are two unincorporated villages located in the northern portion Crestline on Kansas route 26 is 32 kilometers (2 miles) w st of the nearest mining Lawton $1 s 8$ kilometers (5 mlles) northeasi of Crestline A small area of mining occurs 8 kilometers (5 miles) south of Lawton, while a larger area exists to the northeast and extends ϵ astward into Missourl toward the town of Waco Melrose is another unincorporated village located 20 kilometers (12 mlles) west of Baxter Springs An isolated mine occurs 32 kilometers (2 miles) south of Melro e near the Oklahoma state line This mine lies out of the study area but has no assoclated hazards

Baxter Springs and Treece are the two incorporated cit les in this part of the rtudy area Baxter Springs with a 1980 popula -10 of $47621 s$ located on the west bank of the Spring River on $U S$ highways 66 and $1 \in 6$ Just north of the Oklahoma state line The city predates the discovery of lead and zinc ore in the area and owes its beginnings to the Texas cattle drives shortly before and following the Civil War becoming the first cowtown in Kansas Today Baxter Spring still serves the agricultural industry and is also a retall trade center for this corner of the state Mines do not occur within the cily limits of Baxter Springs however they are present immediately to the west northwest and south and represent the northeastern-most extension of the Picher field Treece population 194 is about 10 kiloneters (6 miles) west-southwest of Baxter Springs on the Oklahoma state line and is a former mining camp Treece is located within the Picher field and $1 s$ surrounded on all sides by abandoned mine workings and is extensively undermined

Most of the study area is drained by the Spring River and its tributaries including Shoal Creek Short Creek Turkey Crefk and Center Creek which flow to the west out of the state of Missourl Cow Creek and Shawnee Creek enter the Spring River from the north and Brush Creek and Willow Creek flow southeasterly entering the Spring Ruver in the vicinity of Baxter Springs The Spring River and Shoal Creek are impounded by dams between Lowell and Riverton Kansas The clam at Lowell was constructed by the Southwestern Power Company which later became a part of the Empire District Electric Power Company of Joplin Missouri This dam was built to generate hydroelectric power for use in the nearby mines ($6, \mathrm{p}$ 80) Spring River joins the Neosho River 26 kilometers (16 miles) south of Baxter Springs in the upper end of Grand Lake of the Cherokees in Oklahoma That part of the study area southwest of a line extending northwesterly from a point 5 kilometers (3 miles) southwest of Baxter Springs is drained by streams flowing into the Neosho River The most 1 mp ortant of these is Tar Creek which leaves Kansas near Treece and drains mach of the Picher field It Joins the Neosho River near the town of Kıamı, Oklahoma

General Maning, Milling and Economic Geology

The quantity of zinc and lead produced from the manes of the TriState di trict of Oklahoma Kansas, and Missourl helped make the district ont of the most important metal-mining areas in the world During the 100 sears from 1850 untıl 1950 the Trı-State accounted for 50 percent of the $U S$ production of $z i n c$ and 10 percent of the p oduction of lead (6)

Important years when the major maning activity occurred in the district were between 1880 and 1955 ($\underline{6}$ p 401)

The Kansas portion of the distrlct has produced more than 29 million tons of zinc with an estamated value of 436 million dollars and 650 thousand tons of lead worth nearly 91 million dollais (9 18) The cumulative production of the Kansas ores based on the bove data between 1876 and 1970 are shown in Figure 2 Distribution of the metal concentrates to various Kansas subdistricts of the Tri-State is summarized in Table 2

The general method of winning the Tri-State ores was by underground mining using room and pillar methods However the occurrerce of ore bodies near the surface in the eastern part of the district resulted in some mining companies trying open-cut mining methods especially in the Galena area and in Mıssourı

Norti and west of the Galena field the Cherokee Group of shale sandstone and coal beds of Middle Pennsylvanian age overlie the orebearing carbonates of Mississippian age The Cherokee Group becomes progressidely thicker away from the Galena area due to the regional northwest dip of the rocks and the increase in surface elevation in a

TABLE 2 - Quantity of material treated from Kansas and average recovery of z1nc and lead concentrates during 1911-1945 ${ }^{1}$

Subdistrict	Material Treated		Concentrate Recovery \%			
	Crude Ore (short tons)	$\begin{gathered} \text { Old } \\ \text { Tailings } \end{gathered}$	From Crude Ore		From Old Tailings	
			2anc	Lead	Zınc	Lead
Badger-Peacock ${ }^{2}$	389365	469,045	372	043	034	001
Baxter Springs - Blue Mound - Treece	56718899	$25 \quad 205717$	542	88	097	01
Galena	4,597884	183218	337	59	76	04
Lawton - Waco ${ }^{3}$	5708831	2015900	479	02	109	-
Playter - Crestlıne ${ }^{4}$	1490700	32500	270	126	165	-
Totals	68905679	47906380	517	079	96	01

${ }^{1}$ Data from Martin (9, p l-2)
${ }^{2}$ 1922-1924 included with Crestline District
${ }^{3}$ 1911-1912 included with Badger-Peacock District
41922-1924 included with Badaer-Peacock nistrict
west and north direction With the increase in Cherokee tilckness the deeper munes were in the western part of the Tri-State with the Foley Mine bejng the deepest mıne in the Tri-State district with a shaft at 146 mettis (480 feet) of depth This mine was located 16 kilometers (one mile) north of Treece in the Picher field

Sphalerite and galena are the commercial ore minerals that were mıned in the district McKnıght (10 p 101) lists marcasite and pyrite as commenly occurring with the ores and the common gangue minerals include jasperold dolomite, calcite and occasionally quas tz or barite A detalled discussion of the mineralogy of the Tri-State d strict is covered in McKnight (10 p 101-124) and in Brockie (2 p 414 416417)

Forms of the ore bodies have been described by Brockif (2) as assuming three basic shapes (1) irregular relatively nairow long ore runs of varying heights (2) circular runs and (3) fleit-lying generally tabular bodies called sheet ground that cover jarge areas The most 1 mportant type of ore body shape in the district was the elongated long runs

In addition to the zinc and lead produced in the Tri-state the district was also an important source of cadmilm and germcnium that were produced as a by-product of the zinc-lead smelting precess The summary report on germanium by the $U S$ Bureau of Mines (1c, p 927-929) describe the Eagle-Picher Industries Inc of Quapaw Oklahoma as the sole domistic producer of primary germanium The refined germanium is produced from stockpiles of old smelter residues from the zinc-mining operations in the Tri-State district

Cadinıum is produced as a by-product metal from the smelting of zinc Mote (ll p 188) noted that the average content of cadmium from zinc concentrate in the Tri-State district was 035 percent No primary production of cadmium from zinc concentrate was listed by Mote (ll) for Kansas However production of cadmıum was listed for smelters in Bartlesv lle and Henryetta Oklahoma A sımılar figure for cadmıum content 1 S given by Martin (9 p 5) for Tri-State ore Martin (9) lists the zinc concentrates \bar{a} usually containing 030 to 040 percent cadmium and that some of the cadmium is recovered at the snelters

In 1960, Shelton (17 p 291) listed cadmium production by two companie in Kansas--Sherwin-Williams Company at Coffeyvilli and the Eagle-Picher Company at Galena No estimate can be made of the cadmium metal obtalned from the zinc smelting of Kansas zinc concen rates

The large piles of chat that accumulated from milling of the ore are a valuable commodity used for concrete aggregate road construction and as balla t on railroad beds Kansas chat is composed of small fragments or chaps of flint or chert and limestone (15 p 154)

The quantity of chat used for construction purposes between 1924 and 1956 was estimated by Schoewe (15 p 424) at 19 million tons Value of the quantity of chat consumed was estimated by Schcewe (15) at

57 million dollars Nearly 13 million tons of the 19 million tons total was utilized between 1950 and 1956 Based on information reported to the $\mathrm{u}^{\prime} \mathrm{S}$ Bureau of Mines by mineral producers there was an estimated 10 million tons of chat utilized since 1956 from the Kansas portion of the Tri State

Reserves of Zinc and Lead

An extensive estimate of reserves of $z 1 n c$ and lead in the Tri-State distric was undertaken by the $U S$ Bureau of Mines in the mad-1940 s (13) Cheir work was based on a thorough evaluation of the mines and over 68 thousand drill records for the district In addition consideration wis given to all the known geological features and conditions of the disirict The results of the study were based on work completed by Decembel 31,1947 with a lower cut-off value for reserves of both $1 / 2$ percent and two percent zinc and lead combined

On ly the reserves with two percent metal values were considered in this report Minimum rock thickness considered for reserve considerations by Ruhl (13 p 7) was $71 / 2$ foot face for 15 percent metal values ind \exists six foot face for a 3 percent average metal value interval

Re ultr of their study for reserves of $z 2 n c$ and lead sre for Kansas, with a two percent combined zinc and lead cutoff vilue show a recover ble value for Kansas of 7546700 tons of indicatei reserves having recoverable average concentrate values of 457 percint zinc concentrate and 063 percent lead concentrate This corre ponds to approximately 274 percent zinc and 050 percent lead In the inferred reserve category, Ruhl (13 p 16) shows $3,375,500$ tons of inferred ore with $3 c_{1}$ percent zanc concentrate and 109 percent lead concentrate This corresponds to a metal content of approximately 239 percent zinc and 08 , percent lead No measured ore reserves were inclided in the study fcr Kansas, although Oklahoma and Missourl have reseives in the measured classification

At the tume of calculation of these reserves, 2670800 tons of ore in all classes were under water in Kansas (13 p 17-18) Chis area includes pait of the Galena Crestine and Lawton subdistilucts

In 1964 McKnight (10 p lol) noted for the Picher field that The bulk of the remaining reserves in the field are marginal in grade and can be mined only so long as economic conditions remaln favorable Abandonment of pumping in the Picher field due to economic slow-down would probably result in loss of the remaining low-grade reserves McKnight (10 p 101) further elaborated on this fact by describing the Picher field mine workings as being so extensive and interconnected that the cost of pumping them out again once flooded would be prohibitive when balanced agalnst the tomnage and grade of the remalning reserves

The last operating mine in the Kansas portion of the Iri-State district was the Swalley Mine located Just west of Baxter \subseteq prings that was operated by the Eagle-Picher Industries Inc This mire closed in

1970 and along with it the last pumpage of water from the mining district

Thi quantity of water required to be pumped from the field for mining was enormous Ruhl (13 p 27) describe the volume of water pumped in the Oklahoma-Kansas portion of the district alone as totaling over 36 million gallons a day in 1947 This volume of water was handled by 63 pimping plants with 28 of this total located in Kansas in the Picher reld area

Fol a chemical quality study of water in abandoned $21 n c$ mines within the Picher field area (12 p 2), observations of water in a well located in the mine workings showed an average rise of 12 feet per month This was the observed average for a period of time from September 1975 to June 1977 In the same report D C Brocki= then chief geologit with Eagle-pıcher was quoted as saying that the abandoned mines were filling with highly mıneralized water that by mıd-1976 contained cn estimated 100000 acre-feet of water

Based on the reserve figures of Ruhl (13) for a two percent ore cutoff the metal remaining in 1947 was approximately 287 thousand tons of $21 n c$ and 67 thousand tons of lead Subsequent drilling of the Kansas portion of the district would have proved-up larger amount. of reserves than those calculated by the Bureau of Mines personnel However totals of zinc and lead extracted during the time period of 1948-10, as shown in the US Bureau of Mines yearbooks show totals for Kan as of over 297 thousand tons of zinc and nearly 80 thousand tons of $l \mathrm{ad}$

In summary reserves or at least resources of 21 nc and lead ore undoubtedly remain in the district even though they would be nearly depleted in the old mined areas It is questionable if the remaining resources in the old subdistricts will be mined in the Kansas part of the Tri-State district in any foreseeable future because of several factors

1) The ore $1 s$ nearly depleted except for marginal lcw-grade ore that would require a large price increase in zinc for further consideration of mining
2) Dewatering would be necessary on a very large scale to resume mining in the old district
3) Quality of the water from dewatering or mınıng would require very costly clean-up before release into adjacent stream valleys under the new federal water-quality laws

Most present-day exploration for zınc and lead in Kansas 15 well on the margins of the old mining areas and if a new mine were to be developed it would probably be on the margins of the older field and would have litt le or no affect on reclamation of the previously mıned areas

Land-Ownership Patterns in the Kansas Portion

 of the Tri-State Mining DistrictEssentially all of the surface and mineral rights to land in the Kansas fortion of the Tri-State area are under private ownt rship Government ownership is limited to the highways and roads sf the area and a few acres of city-owned land within and adjacent to the towns and cities in the district In the Kansas study area there are approximately 27,320 hectares (67,500 acres)

Excluding the roads and highways and land ownership within the city limits corporate ownership amounts to approximately six percent of the surface ownership and seven percent of the mineral rights ciwnership The largest corporate owner is the Gulf Oil Corporation with nearly 770 hectares (1900 acres) present within the study area in Towriship 33 and 34 South, Range 25 East Outside of the city boundaries leical government land ownership consists of less than 80 hectares (200 acres)

Even among the properties with the mineral rights severed from the surface rights ownership by private individuals prevalls Evaluation of Cherokee County records indicates that nearly 1450 hectares (3600 acres) of mineral rights were severed from the surface rights Of this total amount of severed mineral rights mining companies own partial mineral cights to nearly 160 hectares (400 acres) with an additional corporate ownership of 65 hectares (160 acres) The other severed mineral cights are owned by private individuals or estates

In general, any additional mining or reclamation of past mining abuses 0 the surface or subsurface can be completed by private agreements u ually dealing with individuals who presently own the land

Kansas Laws

Important laws that exist on the Kansas statute books that pertain to the pioblems of the open pits and open shafts are found in Chapter 19

Article 25, "Wells and Excavations allows for the protection of the general citizen by requiring the landowner to enclose fill or securely cover any abandoned wells pits mines, or other excavations that are not enclosed (Section 19-2504) Upon a citizen complaint in writing the owner has 20 days to properly protect the problem well or excavaticn (Section 19-2505)

Possible action for fallure to comply with the request is discussed in Section 19-2505 that section provides for filing with the township trustee the complaint to the landowner The township trustte must make an investigation to determine if the well pit mine or excavation is dangerous If determined to be dangerous the trustee shal' correct the problem ky filling or covering and the cost for correction of the problem $1 s$ assessed against the land by the county treasurel

Reנmbursement of expenses for the problem correction zosts are authori ed in 19-2506 for the county commissioners to pay jack the townshif trustee the expenses from the county s general fund

Sections 19-2504 25052506 became law in 1895 with modification in 1923

These laws exist in the Kansas statutes but their ut lization 15 obviously very limited because of the numerous problem openings that still exist in the area Appendix A contains these Kansas statutes

Federal Laws

Fedoral laws that would apply to the problems assoclated with postmining a ctivities of the Tri-State are very limited Of direct interest are the hazardous problems assoclated with abandoned shafts, tunnels and entryway and surface impacts of underground and surface mines that are covel ed in portions of the Surface Mining Control and Reclamation Act of 1977 (PL95-87)

Thi law allows for abandoned mine reclamation through the establishment of a trust fund called the Abandoned Mine Reclamation Fund This funcl $1 s$ generated from fees paid in by surface and underground coal mines and is administered by the U S Secretary of the Interior The intent of the fund $1 s$ for reclamation and restoration of la 1 a and water resources adversely affected by past coal mining and the protection of public health safety general welfare and property from estreme danger due to the adverse effects of coal mining

Where volds, open and abandoned tunnels shafts and entryways resulting from any previous mining operation constitute a hizard to public health or safety the Governor of the state can request approval of funds for reclamation of the problem This can be done under this law even when the problem was the result of mining for non-coal minerals (Section 409)

It 1 unlıkely that such a request will be made in Kansas for reclamation of the lead-zinc problem area when an excess of 40,000 surface acres of disturbed and unreclaimed land resulting from coal mining remains in the state In addition, there are nearly 60000 acres of old underground coal mines in the state some with pollution and subsidence problems In Kansas the Mined-Land Conservation and Reclamation Board 1 is the regulatory group designated by the Governor to administer the state portion of the Abandoned Mine Reclamation Fund The stated intent of the Mıned-Land Board is to utilize the moner available in the Kansas fund to help solve the problems generated by coal mining with other mining considered only after the coal problems art resolved With potentlal annual income to the state of 150 to 350 thou and dollars reclamation of lands other than those mined for coal ale unlikely under this Act (PL95-87)

Several other federal laws have strong impact on present mining including the Federal Water Pollution Control Act Amendments of 1972 and 1977 that regulate mining waste water and the Clean Air Act and its
amendments that set significant air standards for several $\exists i r$ contaminants many of which would apply to mining and mineral pro eessing None of these laws affect the abandoned zinc-lead mines of the rri-State district

For the purposes of this study the Kansas Tri-State district is divided into the following seven areas Galena Badger-Peacock Crestline Liwton Waco Baxter Springs and Treece These mining areas are shown 17|Figure 1 adjacent to the town or mining camp after which they are namid

Galena Area

The Galena area includes all the mining in T 34S, $R 25 E$ This area contalns the oldest mining in the study area dating back to the 1870 s The character of the mining and mine hazards in Galena is unique to the study area This is due to the geologic occurrence of the lead and zinc ore and methods used to search for and extract it In Galena ind surrounding areas the Mississippian cherty limestones which contained the ore occurred at the surface thus ore was mined from the gra, s roots down (7 p 108) The shallow nature of the deposits allowed small mining operations to prosper and from the b ginning this portion of the Tri-State was known as a poor man s camp (6 p 68) The method of leasing and developing the deposits in the Gilena vicinity is best described in the following portion of an article appearing in the Carterville Republican and Galena Republican newspaper of the time and quoted in Hay $s(8 \quad p$ 27) report on the Geology and Mineral Resources in Kansas

In response to numerous inquirles from Eastern men who are not famillar with lead and zinc mining, leasing of mining lands, etc we here glve the modus operandl pursued by most of the companies at work in this district An indiviclual or company of men will lease a tract of land--40 80 or 160 acres--that they wish to mine for a term of 10,15 or 20 years binding themselves to pay to the land-owner 5, 810 or 12 per cent, or any other per cent agreed upon $c f$ the gross product from sald land as royalty The company then gen rally speaking plat the ground that they have leased tha is they lay it off into lots 200 feet square which ther sublease to miners at a royalty of 20 to 25 per cent of 1 he gross product of $z i n c$ ore that $1 s$ maned off of said lot by the miner and a royalty ranging from 25 to 55 per cent of the lead mined

The 61 meter (200 feet) square lots were mined by small crews often only two men, using hand tools and a simple holsting levice that was either man- or animal-powered Exploration was conducted by sinking a shaft usually 12 meter (4 feet) square and generally not more than 15 meters (50 feet) deep (6 p 41-42) Shafts were sunk until traces of ore were found then the miners continued their exploration efforts by drifting outward If a body of ore was found the miners bigan stoping to recover the ore (4 p 197-199) Pillars were left for upport while the mine was being worked however $1 f$ any ore was visible on their sides they were generally robbed (4 p 183) If drifts reached 91 meters (30,0 feet) in length or $1 f$ ventilation became difficult addi-
tional hafts were sunk thus 3 or 4 mining lots often had 6 to 8 mune shafts (6 p 77-78)

If ore was not encountered when an exploratory shaft was sunk the miners moved to new ground and sunk another shaft This was the primary means 0 exploration until the churn drill became popular about 1900 (6 p 41) Drilling was easier less costly and able to reach deeper levels than shafting and was widely used in exploring the Kansas mining areas outside of Galena

The use of shafting as a means of exploration and the subdivision of leases into small subleased mining plots results in a high density of mine shifts in Galena when compared with outlying areas The shallow working, the habit of robbing pillars and the brecciated nature of the overburclen resulted in a large number of mine cave-ins in (alena as well $A s$ a result Galena has an appearance and an attendant set of problem. that differ from the remainder of the Kansas Tri-, tate

Badger-Peacock Area

The Baciger-Peacock area 1 s about 10 kilometers ($6 \mathrm{~m} l \mathrm{l} \mathrm{s}$) north of Galena near the Missouri state line in sections 1323 and 24 in $T 33 S$ R 25E This area was developed in 1889 ($2, \mathrm{p}$ 403) in Mis issippian rocks which crop out at the surface in the valley of the Siring River In 1913 deep drilling discovered ore at a depth of 91 meters (300 feet) 6 6 47) Mining occurs on both sides of the Spring River in this area whth workings extending beneath the river as well Althouch once a mining camp Badger-Peacock is removed from any densely pofulated areas today

Crestline Area

The Crestline area 1 s centered 4 kılometers (25 mlles) east of the village $2 f$ Crestline $1 n$ sections 1516 , and 22 of $T 33 \mathrm{~S}, \mathrm{R} 25 \mathrm{E}$ and 15 Just wes of Badger-Peacock In this area Cherokee shales provide a thin covir over the ore-bearing Mississippian rocks below

Lawton Area

The Lawton mining area is located just to the south of the village of Lawton in section $35 \mathrm{~T} 32 \mathrm{~S}, \mathrm{R} 25 \mathrm{E}$ with a small mine occurring in the next section to the south (section 2 T 33 S R 25E) Cherokee rocks occur at the surface in this area This area was pro pected in 1900 but it did not become prominent as a producing area until 1910 ($\underline{9}$ p 9)

Waco Area

The town of Waco is in Missourl however the Waco min ng area extends hest across the state line into Kansas $1 n$ sections 14 and 25 $T 32 \mathrm{~S} F 25 \mathrm{E}$ Just to the northeast of the village of Lawton Cherokee rocks also occur at the surface in this area which became productive in 1917

Baxter Springs Area

This area contains all the mining north south and w st of Baxter Springs from the Spring River to the west about 64 kilometers (4 miles) This arta occurs in $T 34 S$ and $T 35 S, R 24 E$ and 15 the northeasternmost extension of the Picher field of the Tri-State distri t Although some of the mining is old much occurred in the 1930 s and 1940 s when the she t ground southwest of Baxter Springs was developed The most recent mining in the Kansas Tri-State occurred in this area at the Swalley Mine 32 kılometers (2 males) west of Baxter Springs The Cheroket rocks cover most of this area gradually increasing in thickness to the west

Treece Area

The Treece area includes all the mining from about 3 ' kilometers (2 miles) east of the city of Treece to the west This area is in the northwestern portion of the Picher field and surrounds the city of Treece on the east, north, and west The Miami trough a combination syncline and graben, trends northeasterly through this are 1 down-dropping the ore-bearıng Mıssissipplan rocks as much as 91 mettrs (300 feet) in its center beneath a thick section of Cherokee rocks (10 p 74) As a result the deepest mines in the Tri-State district are found in this area Production in the Picher fleld began in Oklahoma and moved north reaching Kansas in 1917 (10 p 94) The years following world War I saw rapıd expansion of the Pıcher field of Oklahoma and Karsas when it became the dominant producing area of the Tri-State district

The Baxter Springs and Treece areas in the Picher field, as well as the other mining areas lying outside of Galena, differ fromit significantly $1 n$ the manner in which the ore deposits were developed which in turn affects the appearance of these areas today and the type of hazards the ${ }_{r}$ contain Most of the area outside of Galena was originally privatelp-owned farmland with ownership patterns following public-land subdivistons that is, composed of square or rectangular portions of a mile-square section The most common unit of land ownership was the quarter ection or 65 hectares (160 acres) The maneral rights to mane underlying ore were leased by the landowners who were paid a percentage royalty of the gross mineral sales from the tract The mining tracts that wert leased generally paralleled the original land-ownership pattern with the most common unit belng one-quarter mile square or 16 hectares (40 acres) These mining tracts were originally mined by numerous small mining companıes who not only mıned the tract but also mılled their own ore in small mills also located on the mining tract This patiern continued until the 1930's when centralized milling became popular due to its greater efficiency and because miners in low-grade ores or mall deposits could no longer afford to operate thelr own mılls centralized milling decreasing ore grades and rising mınıng costs in the 1930 s accelerated the emergence of large mini $1 g$ companies at the erpense of the small operators (lllll 13 99)

The 16 -hectare (40-acre) tracts mined in the Picher field and otner areas outside of Galena though small are much larger than the 61-meter (200 fert) square plots mined in the Galena area Not only were the properties larger but the ore was generally found at deeper levels As a resul mining outside of Galena was usually on a larger scale working larger deposits at greater depths with newer mining technıques and equipment The latter-day miners like their predecessors followed the ore and in many areas mined out huge rooms such as in the West Side Mine neir Treece where one room reached 38 meters (125 feet) in height at a level 130 meters (428 feet) beneath the surface (6 p 95)

On the surface the most common feature of the Plcher fleld and other ajeas outside of Galena are huge chat piles or, more commonly the remnant of huge chat piles that mark the locations of the abandoned mills Chat is a local term for the cherty waste rock resulting from the milling of Tri-State ore Orphaned tailings ponds are also a feature of the landscape outside of the Galena area Surface collapses are found here also however since the scale of the mining is larger in these areas the dimensions of the collapses are corresponing ly larger The den ity of mine shafts is lower outside of Galena because of the larger minlng tracts and because most of the areas were explored after drilling had replaced shafting as the primary means of searching for ore Fewer hazardous shafts likewlse occur outside of Galı na however the one that are present both open and collapsed shafts are invarlably 1 irger in cross-section and deeper than their counte parts in Galena In addition these shafts, because they are more solated and often overgrown with vegetation are more insidious

RESULTS

The findings of this investigation have been mapped on three plates for each of the three $71 / 2$ minute quadrangles which are included in this report These three plates are designated Plate I $A \quad I-B \quad I-C$ Plate II-A II-B II-C and Plate III-A III-B III-C A B and C refer tc the Crestline Neutral and Baxter Springs quadrangles respectively Additional data have been gathered for most of the features mapped and appear in tabulations in the appendices The following is a discussion of the three accompanying sets of plates with emphasis on the mine-related hazards they portray Frequent references will also be made to Table 3 which tallies the number of shafts hazardous shafts open pits and adits in the different mining areas of the fansas TriState For the purposes of this report the plates cover only the $71 / 2$ minute $U S$ Geological Survey quadrangles that are totally in Kansas namely Crestline, Neutral and Baxter Springs The narrow strips of Kansas falling on quadrangles that lie mostly in Missourl ind Oklahoma are shown on the corresponding plates in the Missourl and Ciklahoma reports, and features falling in these strips are tabulated in the reports of both bordering states

Plate I Underground Mines and Shafts

This plate is a compllation of all known underground workings and mine-shaft locations for the study area Known Kansas mine workings underlie approximately 900 hectares (2220 acres) Undermined area determinations for the various parts of the study area are listed in Table 4 As mentioned in the section entitled Information Sources and Study Me hods, mane maps from a number of sources were used in the production of this map However mine maps are not avallable for some mıning aleas This is partıcularly true for Galena where mine maps were elther not made or were lost over the years Some of the other old areas of mining such as Badger-Peacock have spotty information on the extent ol mining Some old mines appear to have been sketched rather than accurately mapped since mine maps of different dates of the same mine some times show different outlines of underground mines with time the quality of mapping improved in the Tri-State and the best quality maps of kansas mining are for those mines in the Picher field namely the Baxter Springs and Treece mining areas

Mints in the Picher field as well as mines elsewhere often operated on more than one level Maps for such mines even when prepared at small scales can become very complex due to the overlapping crenulated outlines of the varıous working levels The mine outlines hown on Plate I are therefore the outermost extent of all working regardiess of the mining level Underground mining was conducted using room and pillar mining and many pillars and larger islands of unm ned rock are shown on some detailed mine maps Most pillars are too small to show on Plate I In addition there is some doubt about their existence following the shut-down of the mines Only the larger unmined areas are shown on Plate I The transference of mine workings from detalled mine maps with scales as small as 120 to the maps in this report having a scale
of 124000 necessitated some generalizations As a resul the extent of underground mining as shown on Plate I should be rega ded as approximate

The intense mining activity in the Galena vicinity ha resulted in a large number of mine features in a small area An attempt was made to show as much information as possible in the Galena area on Plate I-C however the scale of 124000 negated showing it all In some cases mine shafts and other features are too closely spaced to portray with symbols These areas have been outlined on the plates and have annotations indicating the number of features contained in the outlined area To augment the plates in this report enlarged maps of the Galena area have been made to show certain mine features These maps were prepared for 7 sections $111314,15 \quad 22,23$ and 27 in $T 34 S$ R 25E at a scale of 12000 and are included in Appendix B Enlarged maps of the Galena area showing only the known extent of the underground mining are presented in figures $B-1$ to $B-7$ Mines on these maps which appear incomplete actually reflect the incomplete coverage of this area with available mine maps and additional areas not shown as being mined may actually be undermined, but could not be found on any available maps

Mine-shaft locations in Plate I were compiled from twc sources mıne maps and the 1981 aerial photography As in the case of mine workings shaft locations are better portrayed on the mine maps prepared for the later mining areas namely Baxter Springs and Treece Mine shafts were mapped regardless of their purpose depth or fresent condition As can be seen in Plate I-C there are a large number of mine shafts mapped in Galena and the surrounding area Many of these shafts especially those in outlying areas are actually prospect shafts that were sunc in the early days of mining when shafting was the primary means of exploration for the purposes of this investigation which is primarilf concerned with mapping hazards no distinction was made between prospect shafts and production shafts Without a complete knowledge of the extent of underground workings such distinction would be difficul to make Most of the shafts mapped in the Galena area and some of the other old mining areas were found using the 1981 aerial photography Many mine shafts in Galena are still open and'these were easily detected Those that have been filled are also detectable because of small piles of debris surrounding the site of the shaft and because the filling material has compacted over the years creating a small depression at the site of the shaft

The 1981 photography was also used to corroborate the existance and location of many mine shafts shown on the various mine maps used in compilinc Plate I Shaft locations in the Picher field and other areas outside of Galena were often found on both the mine maps and the aerlal photography Their existence on the photography could be interpreted by a number of means In some cases as in Galena the shafts were still open or filled and slightly subsided in other cases the esistence of a shaft could be determined by large boulder piles nearby composed of bull rock which was excavated in sinking the shaft Fillf d shaft sites could also be located by the presence of the concrete foundations
that once supported the holsting apparatus in the shaft Other mine shafts which were more completely reclaimed could be found by the association of scars on the ground marking the former presence of waste piles In some instances mine shafts shown on mine maps could not be found on the aerial photography This usually was due to the shafts being completely covered over by large chat piles or being effectively reclalmed

As shown in Table $3 \quad 345$ mine shafts have been mapped in the Kansas rri-State This number should be considered approximate A large portion of these shafts occur in the Galena area

Plate II Open Shafts Pits and Subsidences

Plate II is essentially a compilation of all the mine hazards found in the Kansas Tri-State Included in these hazards are open mane shafts open plt|mines and areas of mıne collapse Nearly all of these features were found by study of the 1981 photography Older dates of photography were usid to locate mine collapses and place time brackets on the date of thel occurrence All these features were visited in the field where additional data were gathered which appears in the tabulations Photographs were taken of many of these features as well Hazardous mine shafts, aduts and open-pit mines have been numbered within each square $\mathrm{m} i l e$ of the study area By referring to Table $\mathrm{C}-1$ in Appendix C additional information can be found for each of these features under the approprlate township range section and assigned number surface collapst s are numbered separately in each section and are tabulated along with additional information in Table $C-2$ in Appendix C Mine hazards in the seven sections comprising the Galena area are mapped and numbered on 112000 maps of each section which appear in Appendix B

As shown in Table 3, 589 hazardous open shafts were found in the study alea A mine shaft was judged to be hazardous if it could cause injury or entrapment to a person especially an older person or a young child who falls into it Many mine shafts are filled or closed off at varıous depths The extent of potential injury to a person falling in generally increases with the depth of the shaft The depth at which a mine shift was Judged to become dangerous is about 3 meters (10 feet) Although a reasonably healthy adult may survive such a fall and be able to clımb back out a small child or an elderly person may not be so fortunate since many of these shafts are in isolated areas cries for help from their victims may go unanswered Many shafts contain water to varlous depths below the surface including some with water at or close to the urface If the water depth was more than 12 meters (4 feet) or enough to be over the head of a small child it was judged to be hazardous

Of the 589 hazardous shafts found 541 are collapsed hafts the remaining 43 are open but not collapsed (Table 3) Each tipe of shaft is shown with the same open mine shaft symbol unless it is collapsed to such an extent as to be shown enclosing the shaft symbol on the map Most shifts were originally cribbed with tambers or boards and shafts in the lattr mines often had concrete collars at their tops Over the years wtather and decay have taken their toll on the shaft cribbing and

TABLE 3 - Summary of hazards in the Kansas Tri-State mining areas

Mining Area	Adits	Open Pits	Surface Collapses	Uncollapsed Open Shafts	Collapsed Open Shafts	Total Hazard Shaftes	Total Hazards	$\begin{aligned} & \text { motal } \\ & \text { Shafts } \end{aligned}$
Waco	0	0	24	3	10	13	37	42
Lawton	0	0	9	0	5	5	14	33
Badger-Peacock	0	1	7	5	20	25	33	141
Crestline	0	0	5	0	15	15	20	23
Treece	0	0	17	18	62	80	97	189
Baxter Springs	0	0	36	11	63	74	110	151
Galena	6	7	209	11	366	377	599	2966
Totals	6	8	307	48	541	589	910	3545

TABLE 4 - Mınıng-affected areas in the Kansas Tri-State

Mınıng Area	Approximate area covered by mıne and mill waste		Approximate area of known underground minıng	
	Hectares	(Acres)	Hectares	$($ Acres)
Waco	61	(150)	35	(85)
Lawton	8	(19)	5	(11)
Badger-Peacock	11	(27)	16	(41)
Crestlıne	18	(45)	14	(34)
Treece	302	(147)	515	(1273)
Baxter Sprıngs	182	(449)	215	(530)
Galena	361	(891)	100	(246)

only in a few mine shafts is it still intact The lack of support around the mine opening has allowed caving and collapse of the nearsurface rocks and soll The result is a circular shaft opening with a diameter that is usually several times the dimensions of the original shaft Generally the larger the shaft opening at the surfcce the more apparent is the potential hazard to a person approaching on foot The hazard of an uncollapsed open shaft is not realized until a person is standing at the very edge of the shaft opening

In addition to the large number of open shafts found 6 adits or horizontal mine entrances were also found (Table 3) These are found in section $27, T 34 S$, $R 25 E$ Just southwest of Galena Eight open pits were also mapped in the Kansas Tri-State Open-pit mining was not widespread in the Tri-State district but did occur in areas where ore was present close to the surface Mapping open-pit mines from aerial photos $1 s$ difficult because they of ten have the same appearance as mine collapses In fact, in at least two instances, open-pit mining was a direct result of mine cave-ins In Galena in 1902 and in the BadgerPeacock area in 1910 large cave-ins occurred However these mines were too rich to be abandoned and continued to be worked in open-pit fashion (6 p 90) Today most open-pit mines are filled with water and their siles have weathered and slumped over the years giving them the appearance of the many mine cave-ins in the study area

A total of 307 (Table 3) subsidences have been mapped in the study area These features range in sıze from small depressions a few meters in diameter to huge collapses hundreds of meters across Surface collapses are particularly numerous in the Galena area where mining was shallow and pillars were routinely robbed Some instances of subsidence have occurred in the past and have been reclalmed or corrected and are no longe apparent These are shown with small triangles on Plate II Surface ollapses that are still present are shown to their full extent where po sıble

The danger of surface depressions resulting from mine collapse varles considerably with the nature of the collapse In some cases slight slubsidence has created shallow depressions on the surface that present no immediate danger Collapses that are more catastrophic in nature c in create large holes in the ground that are often rubble-filled and part tally flooded The hazard in these cave-ins is determined by their depth and the steepness of their slopes Perhaps the most hazardous cive-ins are those that have occurred over large roons which are then open to the surface as a result of the collapse Regardiess of the present personal danger posed by surface collapses subsidence of any form repiesents a history of instability and areas containing subsidences should all be considered susceptible to further collapse and therefore potentially hazardous At least three cave-ins ozcurred during the course of this study and after the acquisition of aerial photography in february of 1981 One of these number $4 \operatorname{in}$ section 34 T $34 \mathrm{~S} \quad \mathrm{R} 24 \mathrm{~L}$ is Just northwest of Baxter Springs and the other two numbers 19 and 80 in section 14 T 34 S R 25 E occurred on Galena city property very close to the Munlcipal Government Complex These collapses occurred in old mining areas and it thus appears that the passage of time has Ealled to bring stability to the underground mines

The totals for the various types of hazards found in the study area and mapped on Plate II are tallzed in Table 3 The total number of shafts is mapped in Plate I are also shown In addition ubtotals of the vari ous mine hazards are shown for the seven mining areas of the Kansas jri-State which are briefly described in the introduction The following is a discussion of the magnitude and extent of mine hazards found in each of these seven areas

Waco

The Waco mining area straddles the Missourl stati line northeast of the village of Lawton A small part of this area ippears on Plate II-A on the Crestline, Kansas $7 \mathrm{l} / 2 \mathrm{mln}$ ute quadrangle however most of the mine features and hazards are on the Carl Junci ion Mis-sourı-Kansas quadrangle and thus appear in the Missourl report This area contains 13 hazardous shafts, all but 2 of which are collapsed (Table, They range in depth from 3 meters (10 feet) to nearly 30 meters (100 feet) in the case of shaft number 4 A total of 24 surface collapses also occur here, however, these are generally le s than 12 meters (40 feet) deep and most have chat bottoms with some contalning water Some surface collapses occur along the state line ind are used by local residents as trash dumps The state line road in this area has been rerouted to avold these large holes and passes along their edges in both states Mining depths in this area range from 26 meters (85 feet) down to 100 meters (330 feet)

Lawton

The Lawton area lies just south of the village of Lawton and contains 14 mine hazards (Table 3), most of which occur in section 35 T 32S $R 25 E$ Nine of these hazards are surface collapses with depths ranging from less than 3 meters (10 feet) in the smaller ccllapses to 14 meters (45 feet) in the largest collapse (No 1) This large collapse at times has water in the bottom and is used as a local trash dump The five hazardous shafts in this area generally are less than 6 meters (20 feet) deep however, one (No 5) 1 s about 9 meters (30 feet) deep to water

Badger-Peacock

The Badger-Peacock area occurs along the Spring River near the Missourl state Ine on the Crestline quadrangle A total of 33 hazards were found in this area Nine surface collapses were found all occurring eas \mid of the Spring River in its valley These collapses as well as a number of collapsed shafts that also occur in the valley are filled with watt r The largest body of water in this area 15 actually an openpit mane (No I) that began operation in 1910 after a mane collapse (6 p 90) According to the landowner the water in this mine is very deep--in places over 18 meters (60 feet)--and at least one drowning death na occurred here West of the Spring River in sections $23 \quad 24$ and $25 \quad 133 S \quad R 25 E$, all the hazards are shafts all but four of which art collapsed These shafts are all less than 8 meters (25 feet) deep and most have water at the bottom An lsolated uncollipsed shaft
$1 s$ also located in section $11 \quad T 33 S \quad R 25 E$ This shaft when visited contained water to within 5 meters (15 feet) of the surfact Mining depths in this area ranged from 27 meters (90 feet) down to 54 meters (176 feet)

Crestline

The Crestline area is in sections 1516 , and 22 in $T 33 S \quad R 25 E$ Just to the east of the village of Crestline and on the quadrangle of the same name In all 20 mine hazards were found in this area five of which are surface collapses located in section 15 One of these collapses $1 s$ very small, but the other four are up to 18 meters (60 feet) deep and numbers 3 and 4 are quite hazardous Collapse number 5 has had a ramp dug to its bottom and is used to water cattle The 20 collapsed shafts in the Crestline area are generally shallow (less than 6 meters (20 feet) or are filled with water to near the surface Tvo collapsed shafts numbers 7 and 8 in section 15 are very hazardous--measuring about 24 meters (80 feet) to water Shaft number 8 is near an e ist-west county road and as seen in Figure 3 , is in a densely vegetated area Across the road in section $221 s$ another collapsed shaft (No 2) which is shown in Figure 4 This feature 1 s about 18 meters (60 feet) deep and is used as a trash dump Its hazard is increased by its proximity to the road Crestline area mining depths range from 21 meters (70 feet) down to 64 meters (210 feet)

Treece

The Treece area begins about 4 kilometers (2 5 mlles) east of the town of rreece and extends on west It 25 covered by the Neutral quadrangle 10 Plate II-B however a small strip near the state line is on the Mıamı northwest, Oklahoma-Kansas and the Picher Oklahoma-Kansas quadrangles and is covered by the Oklahoma report A total of 97 mine hazards were found in this area and most (79) are shafts (Table 3) Although there are only 17 surface collapses in this fairly large area of inten emining some of these are quite large The largest collapse in the T eece area occurs along the course of Tar Creek (No 1) in section,$T 35 S \quad R 23 E$ This collapse is 70 meters (230 feet) by 130 meters (130 feet) and is about 18 meters (60 feet) deep Figure 5 is a view takin from inside the collapse looking at the north wall where a steady flow of water falls over exposed Cherokee shales Deeper parts of the collapse are filled with water

Figure 6 is another large collapse which is number 2 in section 11 $T 35 S \quad \mathrm{R} 23 \mathrm{E}$ This collapse is about 55 meters (180 feet) in diameter and is filled with water to within 12 meters (40 feet) of the surface Its totad depth is unknown, but mine workings are about 90 meters (300 feet) defp Another large collapse is number 1 in section 7 T 35 S R 24E Ihis oblong-shaped collapse is 46 meters (150 feet) by 90 meters (300 feet) and 18 meters (60 feet) deep It occurs within 90 meters (300 feet) of U S highway 69 and 15 over mine workings whith are 90 meters (00 feet) deep Small shallow subsidences occur ju't to the southeast of this large collapse that may indicate its dirertion of growth

FIGURE 6 - Surface collapse 2 in sec 11 T 35S R 23E
northwest of Treece Kansas

The remainder of the 97 hazards in the Treece area ar the 80 hazardous shafts which were found (Table 3) These shafts are a large percent ige (42 percent) of the total number of shafts known to exist in the are \mid (189 shafts) The depth of these shafts probably accounts for a large percentage of them being hazardous Sixty-two of ihe hazardous shafts cre collapsed Some of these appear to have been filled at one tume but further collapse and settlement of the fill has made them hazardous again These shafts are generally less than 9 meters (30 feet) deep and are thimble-shaped A large number of shafis are collapsed an'd appear to never have been filled These are often quite deep - usually having water in the bottom Depths have bef n estamated as high as 60 meters (200 feet) in some cases These coll ipsed shafts are usually funnel-shaped at the top with diameters often $3 n$ the 6 meter (20 foot) to 12 meter (40 foot) range The diameters shrink with depth and the funnel-shaped walls of the collapse are very steep belng composed of Cherokee shales Recent cave-ins found in the fifldindicate that many of these collapsed shafts are still growing outw ird

Figure 7 is a view of a typlcal deep collapsed shaft in this part of the study area This shaft $2 s$ number 8 in section $12 \mathrm{~T} 35 \mathrm{~S} \quad \mathrm{R} 23 \mathrm{E}$ It is about 9 meters (30 feet) in diameter at the top and is approximately 15 meters (50 feet) deep Like the other collapsed shafts in this arez, this shaft is surrounded by brush and trees that conceal its potential hazard until it is closely approached

The remalning 18 hazardous shafts are open and uncollapsed and reach depths up to 60 meters (200 feet) These shafts are usually rectangular in cross-section with wood cribbing and often have concrete collars Figure 8 is shaft number 6 in section $2 T 35 S \quad R 23 E$ on Plate II B This shaft is 15 meters (5 feet) by 21 meters (7 feet) and has wood cribbing up to the surface This shaft is surrounded by a small we lded wire fence however, many shafts and surface collapses lack any protective barriers However no trespassing signs are a common feature ilong the section roads passing through these mining areas

Mint depths in the Treece area range from 52 meters (170 feet) down to 146 meters (480 feet) the deepest in the entire district Many mınes art 90 meters (300 feet) or more in depth

Baxter Springs

The Baxter Springs mınıng area begins at the Spring Rifer and extends about 64 kilometers (4 mlles) west This area 1 s plit between the Neutral Kansas and Baxter Springs Kansas quadrangle of plates II-B and II-C with a small strip along the south that is on the Picher Oklahoma-Kancas and Peoria Oklahoma-Kansas quadrangles and is covered in the Oklahoma report A total of 110 mane hazards were found in this area 36 of which are surface collapses (Table 3) Included in this are a number of small shallow subsidences as well as some major cave-ins including what is probably the largest collapse in the entire Tri-State district

This large collapse 15 number 10 in section 10 T $35 \mathrm{~S} \quad \mathrm{R} 24 \mathrm{E}$ and part of 1 t is shown in Figure 9 The feature measures 140 meters (450 feet) by 200 meters (650 feet) and about 30 meters (100 fet t) deep Water of variable depth usually covers the bottom The iriegular contact between Pennsylvanian shales of the Cherokee Group above and Missıssippian limestones below can be seen about halfway up the far side of the collapse in figure 9 The mining in this area was at 1 depth of 85 meters (280 feet) and was in the sheet ground-type ore deposits (10 p 100) Two more large collapses exlst just to the north (No 9) and northwest (No 1) of collapse number 10 These two collap es are smaller in area, but are about the same depth as the larger collapse

Two large collapses are also found just to the west of Baxter Springs $2 n$ section $11, T 35 S \quad R 24 E \quad C o l l a p s e n u m b e r ~ i s ~ 40$ meters (130 feet) by 107 meters (350 feet) in surface extent and about 24 meters (30 feet) deep Just to the south $1 s$ another large collapse number 2 This collapse is 60 meters (200 feet) by 76 meters (250 feet) and $1 s$ partially filled with water

Another large collapse, number 3 in section $2 T 35 S \quad R 24 E$ has been used as a sanitary landfill by the city of Baxter Springs and was nearly full when visited in the field

A total of 151 shafts were found in the Baxter Springs area (Table 3) Of these, nearly half 74, were Judged to be hazardous All but 11 of these were collapsed Of the 11 uncollapsed shafts in the Baxter Springs irea, perhaps the most hazardous is shaft number 3 in section 35, T 34 ${ }^{\text {1. }} \mathrm{R} 24 \mathrm{E}$ which is plctured in Figure 10 This shaft measures 2 meters (6 feet) by 2 meters (6 feet) in cross-section and $1 s$ about 18 meters (60 feet) to water however, it is concealed in tree and has no protectile barrier This shaft was found on the February, 1981 aerial photography but would have been impossible to detect on photography acquired during the spring or summer when the overhanging vigetation would have been leafed out

A tctal of 63 collapsed shafts were found in the Baxte] Springs area and judged to be hazardous As in the Treece area some of these hazardous shafts are very deep with depths estımated as high as 60 meters (200 feet) in the case of shafts 10 and 11 in section 10 T 35 S $R 24 E$ Since Cherokee silts and shales are the surface rock in the Baxter Springs area, collapsed shafts have the same funnel hape as those in the Treece area Shaft number 10 is shown in figure 11 The top of this shaft is expanding and is gradually taking in the boulder pile in the background Figure 12 shows shaft number 3 in -ection 10 $T 35 S \quad R 24 E$ This shaft is about 6 meters (20 feet) across at the top and 46 meters (150 feet) to water The original shape of the shaft is suggested by the rectangular cross-section at depth

Mine workings in the Baxter Springs area range in depth from 30 meters (100 feet) down to 104 meters (340 feet) with many mines in the 60 meter (200 foot) to 90 meter (300 foot) range

FIGURE 9 - Surface collapse No 10 in sec 10 T 35 S R 24 E
southwest of Baxter Springs Kansas Collapse No 9 is in the
backjround

The Galena mining area occuples roughly the eastern half of $T 35 S$ R 25 E Most of this area 1 s on the Baxter Springs quadrangle of Plate II-C A small strip on the Mıssouri state line falls on the Joplin West Missouri-Kansas quadrangle and is included in the Missouri report A total of 599 mane hazards were found in the Galena area (Table 3) This represents nearly two-thirds of all the mine hazards found in the Kansas study area Most of the mıne hazards in the Galena area are found in 7 sections $11 \quad 13 \quad 14 \quad 15 \quad 22 \quad 23$ and 27 in $T \quad 34 S \quad R \quad 25 E$ The densit, of hazards in these sections 15 such that the, cannot be shown cnd numbered on Plate II-C To adequately portray these hazards 112000 maps of these 7 sections have been prepared and are shown in Figure B-8 through B-15 in Appendix B Even at this scal the hazardous shafts and surface collapses in section 14 had to be placed on separate maps figures $B-10$ and $B-11$ respectively

As mentioned in the description of the Galena mining area in the introduction a large number of mine hazards exist in thi area because shafting was the primary means of exploration mining was restricted to 61 meter (200 foot) square lots each one containing a shift the deposits were close to the surface, and ore-bearing pillars were routinely robbed The end result, a hundred years after the heyday of mining in Galena $1 s 6$ open adits 7 open pits 209 surface collapses and 377 hazardous shafts many of these within the Galena city limits

Much of the Galena mining is concentrated in a broad arc beginning near the Missouri state line east of Galena in sec 13 T 34S R 25E and extending northwest to the Short Creek bottoms near the Main Street bridge in section 14 then sweeping south and southwest through sections 2223 and 27 and ending at the valley of Shoal Creek

One particularly bad spot in Galena is in the southwest quarter of section 13 and the southeast quarter of section 14 Once the site of the Southside Mine this area is today called Hell's Half Acre by many local risidents Figure 13 is a wide-angle view of part of this area taken f om atop a chat pile adjacent to Fourth street and looking north The areilis a moonscape of rubble piles collapsed mines and open mine shifts that typifies the present condition of most Galena mining areas One of the largest of the 209 surface collapses in the Galena area is shown in Figure 14 This view includes part of collapse numbers 68 and 11 in Figure $B-11$ of the Appendix These two collapses together are about 180 meters (600 feet) long and 18 meters (60 feet) deep Resistant masses of Mississippian cherty limestones are explosed in the walls of the collapse in Figure 14 These are buried beneath a mantle of cherty rubble that varies in thickness and readily weat iers to form talus slopes on the sides of this and other collapses wh n the talus is not fresent horizontal drifts are sometimes exposed in the walls of these large collapses

In some cases as in Figure 15 (surface collapse number 75 section 14 Figure $B-14$) cave-ins have occurred where either an underground room was close to the surface or the spalling of the roof rock has brought

FIGURE 13 - Overview of Southside Mine area in Galena hansas southeast sec 14 and southwest sec 13 T 345 R 25E

FIGUQE 14 - Surface collapse No 71 in Southside Mane arei sec 14 T 345 R 25 E Galena, Kansas

the room close to the surface In either case part of the underground working are exposed to the surface Two such cave-ins were entered in the Soul hside Mine area in the company of Ralph Cure a life-long Galena resident who is famılıar with its many mine hazards One mine was entered through surface collapse number 1 in section 13 (Figure B-9) This mine opening which is shown in Figure 16 leads downward and then eastward! While underground the penetrations of mine shafts 1011 and 12 could be seen through the celling Another mine wa entered through surface collapse number 37 in section 14 (Figure B-1l) This mine clclmed the life of a boyhood friend of Mr Cure's about 20 years ago At that time the mine according to Mr Cure, was derper having since wcrked its way to the surface through a succession o roof falls When this mane was entered in the late summer of 1981 mane shafts numbers 108 109, and 110 (Figure $B-10$) could be seen penetrating what appeared from below to be a very thin roof At this time Mr Cure expressed surprise at how much higher the floor of this mine was in comparıson to his last visit It appeared that a large palt of the ceiling had fallen in falrly recently The mane was vacated at this point and no other mines were entered If deterioration and spalling of room cellings is occurring in this mine room similar conditions are probably occurring in other mine rooms as well Thus desfite the age of the Galena mine workings they have probably not reachecl stability and further mane cave-ins are a possibility

Whereas most of the surface collapses in the Southside Mine area are dry and generally less than 18 meters (60 feet) deep, surface collapses in the Short Creek valley of sections 14 and 15 usually contain water However, three of the largest water bodies in this area are actually open-pit mines Open-pit mines are numbered along with the shafts on the maps in this report and in Table $C-1$ in the Appendix The three la ge pits in the Short Creek valley are numbers 7 and 12 in section 14 (Figure $B-10$) and number 17 in section 15 (Figure B-12) Open-pit number 7 (section 14) is shown in Figure 17 This pit is filled w th greenish-blue water of unknown depth crane (4 p 189-190) states that open-pit mining in the Short Creek valley began in 1901 as the result of a mine cave-in A study of multidate aerial jphotography however shows that much of the open-pit mining was conducti d in the 1940 's

Water-filled surface collapses are also found in the northeast quarter $c f$ section 23 (Figure $B-14$) The largest of these $L s$ number 12 which is 76 meters (250 feet) by 91 meters (300 feet) appeirs to be quite deep and is known locally as the Blue Hole because of the vivid color of the water that fills it Few of the other surface collapses in the Galena area contain water

Six adits were found in the Galena area all of them are located in section 27 Figure 18 shows an adit (number 79 Figure B-15) located near a county road southwest of Galena Most adits are partially flooded and none were entered

Of the 599 hazards in the Galena area 377 are hazardous shafts and out of hese all but 11 are collapsed to some extent The paucity of uncollapsed shafts in this area can be explained by the age of the shafts ind the rotting away of crabbing over the years and also by the widespriad occurrence of unconsolidated cherty gravels that mantle most of the outcrops As a result, the 366 collapsed shafts in and around Galena have the characterıstic appearance of inverted cones of loose cherty rubble at or near the angle of repose that narrow down to small square craggy shafts cut through cherty limestone bedrock An example of such a shaft from section 14 is shown in Figure 19 Another typical Galena collapsed shaft is shown in Figure 20 This shaft nters an underground room at a very shallow depth The loose rubbl/ slopes surrounding these shaft-openings make them very hazardous Since the material above the shaft $1 s$ at or near the angle of repose a person walking along this slope may set off a small landslide of which he may inadvertantly become a part

According to mine maps, the working levels of most of the mines in the Galena area were shallow generally less than 33 meter (100 feet) deep However two mines south of Galena the Hartford Mine in the southeast quarter of section $26 \mathrm{~T} 34 \mathrm{~S} \quad \mathrm{R} 25 \mathrm{E}$ and the $\mathrm{Cl} \in \mathrm{rmont}$ Mine in the southeast quarter of section $34, T 34 \mathrm{~S}, \mathrm{R} 25 \mathrm{E}$ reachecl depths of 61 meters (185 feet) The Clermont Mane map also noted that cre was located at levels up to 30 meters (95 feet) deeper than thos ϵ deplcted Thus deeper mines may exist in the Galena area as clalmed by some residents however it is difficult to document this with the mine maps that are avaılable

The mine shafts found in the field are estimated to be as deep as 26 meter (80 feet) however, most are judged to be in the 10 meter (30 feet) to 16 meter (50 feet) depth range The shafts are about equally divided imong those that are dry at the bottom and those which contaln water ine rough jagged nature of the rock comprising the walls of these shifts make them hazardous at any depth A fall into one of these shafts would seemingly result in as much injury from glancing off the walls as from final impact with the bottom

The hazardous nature of the many mine shafts and surfare collapses in the Galena area is tempered somewhat by the lack of heavr vegetation in most mining areas The cherty rubble that blankets area of intense mining creates a substrate that is too sterile for most typis of native vegetaticn As a result a person walking through these mining areas is usually afforded excellent visibilıty and can normally detert a mine hazard before it is too late However, one should not assure that all mine hazards are so well exposed Tall grasses grow in some areas where the mine waste $1 s$ thin or absent and they can conceal open mine shafts Shaft 38 in section 13 (Figure $B-9$) is such a shaft Located in grass over 2 meters (6 feet) tall it is not apparent until one 1 - standing at its very edge Similarly shafts 63 and 64 in section 14 (Figure $B-10$) are also hidden in tall grass Shaft 73 whlch is also in -ection 14 is an uncollapsed shaft in a grassy vacant lot It was difficult to find in the field despite the fact that it is located within 30 meters (90 feet) of Main Street in Galena

FIGUR 19 - Typical collapsed shaft in Galena Kansas area sec 14 T 349
R 25L


```
Plate III Mine and Mill Waste
```

Plite III shows waste sites and tailings ponds found in the study area fpproxımately 943 hectares (2328 acres) are covered by mine and mıll wa te in Kansas Waste-covered area determinations $f o r$ the various parts of the study area are listed in Table 4 The larger chat piles and tho-e tallings ponds which were judged to be potentially hazardous are numbered within each township and are tabulated in Table C-3 Chat Piles arid Tailings Ponds in Appendix C This plate was p epared using the 1981 aerial photography acquired for this study Hund eds of waste piles were mapped These vary in size from the very small piles found near shallow shafts in the older mining areas around Galena to the remnants of huge chat piles left by centralized mills of the Treece and Baxter Springs areas The value of chat as an aggregate rtsource has resulted in quarrying and removal of much of the Tri-State chat over the years In fact, only a few of the large chat piles remaln extant in the study area plate III uses solid lines to show chat and wiste piles existing in 1981 Chat-covered areas are deplcted using a broken line These areas include the remnants of reclalmed chat piles and areas covered by mine waste Much of the Galena mining areas ars covered by mine waste and over the years this material has been washed away filling some of the stream channels in the area

The chat plles of the Picher field in the Treece and Baxter Springs areas were orıginally huge conical hills of chat reaching $t 0$ meters (180 feet) or more helght The dashed lines in this area as shown in Plate III approximate the bases for these piles before their reclamation Many of these piles have been almost completely removed lecving only a thin mantle of chat In other instances small isolated piles of chat remain In still others the process of reclamation was still going on at the time of aerial photography These chat piles that here being actively quarried appear in Plate III having irregular scalloped outlines

Figure 21 is a view of part of the Treece area of mining This photo wa taken from atop chat pile 16 in section 14 T 35S $R 23 E$ looking orthwest It shows the truncated remnants of pile number 15 in the middle distance and part of what remains of chat pile 9 on the right (hat pile 6 which is nearly complete can be seen in the distance

Chat piles are generally not very hazardous As can be seen in the foreground of Figure 21 they can have slopes which approach the angle of reposf However they can normally be climbed without fear of burial It is these steep slopes which make chat piles particularly attractive to owners of off-the-road vehicles who use areas of chat as playgrounds for thelr motorcycles and dune buggies Such use of chat plles should be done only with a good knowledge of the area and any hazards present

Chat pıles can become hazardous in at least two ways One way occurs when the chat pile is being actively quarried Although the chat is genercily unconsolidated at the surface after years of burial in

FIGURE 22 - Large tallings pond No 6 used in chat-recjaiming operation $1 \mathrm{n} \sec 10 \mathrm{~T} 35 \mathrm{~S} R 24 \mathrm{E}$ west of Baxter Spings
Kansas
large piles the chat can become weakly cemented this csmentation being caused by the interspersed limestone in the chat As a result when machiner $l_{\text {begins removing chat from the pile the remaining chat is }}$ ofter capable of maintaining a near-vertical face sin ee the chat is only weakly cemented this steep face may pose a hazard to persons venturing near it both above and below Chıldren digging into such a face run the risk of rapid burial Another way in which chat piles can becore hdzardous $1 s$ by the collapse of mines or mine shifts beneath them The most dramatic such instance in the study arei occurs in chat pile $31 n$ section $2 T 35 S \quad R 23 E$ In the center of this pile is a collapsed shaft (No 7 Plate II-B same section) 13 meters (40 feet) in diameter but nearly 33 meters (100 feet) deep

Tailings ponds were a common feature of the Treece Baxter Springs and Waco mining areas Because of the subtleness of the topography in these areas tallings ponds were never very deep--most keing less than 3 or 4 meters (9 to 12 feet) deep Today these ponds are in varıous state, of preservation Most have had their embankments breached and no longe- impound water These ponds are shown on Plate III by the use of a hachured line indicating the location of the embankment, the area behind this line remalning empty Other tallings ponds are of more slgni lcance and are potentially hazardous These are shown on Plate III w th the same embankment symbol, but the ponds themselves are filled in with dashed lines and are assigned numbers which refer to information on the ponds in Table C-3 Chat Piles and Tailings Ponds in Appendix C

The potentially hazardous tallings ponds are of two types The first type 15 generally dry but lacks a cover of vegetation and $1 s$ subject to wind erosion The fine-grained tallings in some of these ponds are slowly migrating with the prevailing winds An example is pond 8 in section $11 \quad T 35 S \quad R 23 E$ from which mill waste has been blown into 2 meter (6 foot) dunes to the north of the original pond In fact these dunes are burying shrubs and small trees in this area However the real hazard of these ponds is caused by very fine mill waste which does not form dunes but becomes alrborne and $1 s$ dispursed over large areas thus becoming an air pollutant and a possible health hazard

The second type of hazardous tallings ponds are tho e that still mpound water however, the hazards associated with thest ponds are not judged to be hıgh The danger of catastrophic flooding lesulting from the fallure of a pond embankment does not exist in this tudy because of the small amount of vertical storage of the ponds and the low rellef of the tooography The potential hazard exists for those who use the ponds for swimming and other pursults Although the ponds are not deep thelr bottoms are composed of fine-grained mill wastes that are saturated with water and behave much like quick-sand

The largest tailings ponds found in the study area that is the ones that contain the most water, are those that are still being used in chat riclaiming operations These ponds store water that is used to sort the chat into different sizes for different markets The largest
of these ponds $1 s$ pond 6 section 10 T $35 S \quad R 24 E$ whach 15 shown in Figue 22 The remnants of chat pile 12 appear in the jackground along with the apparatus used for sorting chat

Four general types of mine openings are present in the Kansas part of the Tri-State mining district many vertical square shafts numerous larger vertical rectangular production or holst shafts a few horizontal adits and a number of large areas of roof c ive-ins

Methods and materials are suggested to close or secure the openings in such $?$ manner that they can be reopened if necessary It is recommended that shafts not be filled without plugs unless trey are small dry and fill material is readily available nearby Chert tailings are a dwindiling resource which should be utilized in the best possible manner The methods described are designed to be simple and to use a minimum of construction material (concrete reinforcing steel etc) and fill materıal

In the late $1950^{\prime} \mathrm{s}$, in connection with improvement of $U S 66$ highway one of the authors of this report then an engineering geologist with the State Department of Transportation, devised a plan to blast down the roof of a small section of a mine that extended under the haghway just south of the present municipal bullding in Galena

A part of the roof had collapsed at the west end of the room and it was possible for the geologists to survey and map the location and volum of the room and estimate the roof thickness Thi was necessary to know for bid purposes

Under construction a small bulldozer pushed dumped Eill into the room until clearance with the roof prevented further filling This was done to reduce the distance that the roof would fall and cushioning it to reduce selsmic vibrations The roof was then drilled from the surface ind rhot down with a series of delays between the lines of holes to preverit vibration damage to adjacent buildings

Pnother section of the mine extends under US 66 under Owl Creek near the west city limits It was decided not to attempi to blast it down kecause part of the room had an 80 foot floor-to-ce ling helght It was feared that the hydraulic ram effect of the falling rock might collapse mane openings off the project right-of-way In tead the section of the pavement over the mine was heavily reinfoiced to act as a bridge if the roof did collapse from traffic vibration

In general there are few other places where blasting could be used without incurring possible liability and it is not reconmended

On another highway improvement project immediately west of Baxter Springs, a 75 foot deep and 75 foot diameter cone-shaped collapse crater had formed over a vertical shaft extending into a large room at depth The volume of the surficial material which had ccllapsed into the hole was not sufficient to fill the shaft and the volume of the vold was not known A sharply tapered pre-cast concrete pyranid was devised The base dimension of the pyramid was larger than the shaft The pyra-
mid was guided down the sloping sides of the crater and then lodged in the haft The crater was then filled with chat Little or no settlement has occurred in the approximately 20 years since filling As stat \in later this method is recommended for deeper cratered shafts

Vertical shafts are the most numerous and dependigg upon condition at or near the surface may be treated in two way If bedded rock is within a few feet of the surface the loose grarel or soll can be cleared away to allow a precast reinforced concret slab to be plactd on the bedrock surface the same method can be u ed for shafts with concrete collars in fair to good condition

Cratered shafts with timbered cribbing or no cribbing can be plugged with an inverted pyramid of concrete depending upon the shape of the opening at bedrock The base or top of the pyranid is designed to overlap the opening by about one foot on all sides

The nature and dimensions of most of the hazardous shafts below a depth of about 6 meters (20 feet) is difficult to determine by observation at the surface Since most of these shafts are collapsed at the top to some extent it is impossible to look directly down the shaft Shafts may either (1) dead end in solid bedrock, (2) enter rooms of various vertical and lateral extents, or (3) be bridged by rock falls or coicrete foundations pushed into the shaft after cessation of mining In an y of these three cases the shaft may be flooded with water to varying distances from the surface A survey of shafts at depth elther by diject observation or a remote television system may be useful to determine the best method of shaft closure In case (1), backfiling would be recommended in case (2) a concrete plug would be advised and the shaft survey would determane the size and shape of the plug needed to close off the shaft at solid bedrock and in case (3) if the bridge is judged to be stable, the shaft may be backfilled if not plugging would be advised

Concrete plugs may either be cast in place over the shaft opening or precast and lowered into place The first method could be used in the Galena area Here solid bedrock is generally close o the surface Lightweight forms could be constructed and lowered into he shaft opening Because of the potential hazard of driving heavy equipment in this area, cement could be pumped some distance from a cement truck, which would remain on stable ground to the shaft opening Precast plugs could be used in the Picher field around Baxter Springs ind Treece and other areas where solld bedrock lies some distance below the surface and the placement and filling of forms would be difficult A down-the-shaft survey would recommend the size of plug necessary and it could then be lowered in by crane The ground in these areas although collapsed in places is judged to be more stable than the ground in Gilena and could support heavy equipment In elther case a portable conveyor belt should be used to place backfill so that loaded trucks dc not approach or dums directly into the hole

It is not necessary and probably would be dangerous to attempt to clear away loose materlal above bedrock because the tapered shape of
the plug wall tend to guide it into the hole where $1 t$ will wedge tighter as backfill material $1 s$ applıed Any minor settlement of backfill will act to increase the wedging action

Adits which are few in number will have to be treated individuallf depending on the size and shape of the horizontal opening A suggr sted method is to wedge concrete forms into the openings leaving a door in the center to allow access to the back or mine side of the form Holes should be drilled into the rock walls ceiling and floors of the opening and steel rebars grouted in to assure tiat the concrete $1 s \mathrm{p}$ nned to the sides of the opening After concrete 15 poured and cured and forms stripped a steel door frame and a door fabricated of clostly-spaced welded steel strap should be bolted into the opening The door will allow access if needed and provide for rentilation and drainage An appropriate no-trespassing or warning sign should be attached to the door

Large collapse craters in urban areas or near road especially if filled with water should be fenced with six-foot high heavy-duty steel cyclcne-type fencing with barbed-wire canted out on the top A gate should be installed for access Appropriate warning sicns should be attached and replaced promptly if removed or vandalized The fences should be set back an appropriate distance from the edges of the hole to prevent 1 ts loss in case of future caving--distance to ke judged by conditions of the walls and past observation

こratered areas away from roads in rural areas can ke enclosed with well constructed barbed-wire fences and locked gates No-trespassing and warning signs should be spaced every few hundred feet apart

In alternate suggestion for the area north of City Hall in Galena might be to fence around the cluster of shafts and collapse craters and provide wooden-fenced walkways simılar to those built by the $U S$ Park Servire among the mud pits and geysers in Yellowstone Park Explanatory signs and pictures could be placed at intervals along the path The area could be locked at night or when unattended

In information center in conjunction with the walknay might be developed in City Hall which is closely adjacent If entry to the informational walkway was through City Hall some control to access would be possible
[ilsplays stressing the historical importance of the first mines in Kansas and the development of the Short Creek District (alena and Empire Cily should attract passing tourists and visitor on nearby U S 66

It $1 s$ probable that there still exist old photos puctures and maps of the exact area to the west of City Hall as well is representative photos and displays of other areas mills smelters equipment miners, and people of the area

Displays of actual mining equipment $1 f$ available and explanations of 1 s use in conjunction with displays of the district s rocks and minelals would be very informational

In addition to the historical displays panels maght be made to explin the Bureau of Manes reclamation project its objectave and spon ors Enlarged color photos and an automated slide show with explan tory sound tape could be inexpensively devised The effect of this would be to show the area and the project in a positive manner to the general public

1 Brichta L C Catalog of Recorded Exploration Drilling and Mine Workings Tri-State Zinc-Lead District--Missourl Kansas and Oklahoma BuMines IC 7993, 196013 pp

Brockie, D C E H Hare, and P R Dingess The Geology and Ore deposits of the Tri-State district of Missourl Kansas, and Oklahoma In Ore Deposits of the United States 1933-1967 (Graton-Sales Volume) $v 1$ Am Inst Mining Metall and Petr Eng 1968 pp 400-430

3 Clark J G Towns and Mınerals in Southeastern Kansas a Study in Regional Industrialization 1890-1930 Kansas Geol Survey Spec Distrib Pub, no 521970148 pp

Crane, W R Methods of Prospecting Mining and Milling in Kansas Lead and Zinc District Kansas Geol Survey v 81901 pp 177-387

5 Ebanks J W Jr L L Brady P H Heckel H (O'Connor $G A$ Sanderson $R \quad R$ West, and F Wilson The Mississippian and Pennsylvanian (Carboniferous) Systems in the United States-Kansas U S Geol Survey Prof Paper llll-Q 197930 pp

6 Gibson A M Wilderness Bonanza--The Tri-State D strict of Missourl, Kansas and Oklahoma Univ of Oklahona Press Norman Oklahoma $1972 \quad 362 \mathrm{pp}$

7 Haworth E History of Geography Geology and Metallurgy of Galena-Joplin Lead and Zinc Kansas Geol Survey, v 81904 pp 1-126

8 Hay R Geology and Mineral Resources of Kansas Kansas State Bd Agri Blenn Rep no 8, part 21893 pp 99-164

9 Martin A J Summarızed Statistıcs of Production of Lead and Zinc in the Tri-State (Mıssourı-Kansas-Oklahoma) Minirig District BuMines IC 7383 1946, 67 pp

McKnight $E T$ and R Fischer Geology and Ore Deposits of the Picher Field Oklahoma and Kansas U S Geol Survey Prof Paper $5881970 \quad 162$ pp
11 Mote, R H Cadmıum, in Minerals Yearbook--1950 BuMines Washington, D C U S Govt Print Off 1952 pp 188-193

12 Elayton S J R Davis and $R G$ McClafinn 工hemical Quality of Water in Abandoned Zinc Mines in Northeastern Dklahoma and Southeastern Kansas U S Geol Survey Open File Rep 78-294 197867 pp

13 Fuhl O S A Allen and S Holt Zinc-lead Oje Reserves of the Tri-State District Missouri-Kansas-Oklahoma BuMınes RI 4490 194959 pp

Schoewe W H The Geography of Kansas Kansas Acad Sci Trans $\checkmark \quad 521949$ pp 261-333

The Geography of Kansas Pt 4 Economic (eography Mineral Resources Kansas Acad Scl Trans $v \quad 61$ 19',8 p 359-468

Seevers W J , Description of the Surficial Rock in Cherokee County Southeastern Kansas Kansas Geol Survey Geology Series no 119757 pp
Shelton $J E$ and $E \quad B$ Miller Cadmium in Minerals Yearbook-1960 (V 1) BuMınes Washıngton DC, US Gevt Print Off 1961 pp 289-296

S Bureau of Mines Mineral Industry in Kansas in Minerals Yearbook 1946-1970 Washington D C U S Govt Print Off 1948-1972

Mınor Metals in Minerals Yearbook--1980 (v l) Washington D C U S Govt Print Off 1981 pp 923-936

APPENDIX A

Kansas Statutes Pertaining to Abandoned Mine

Artuclt 25 -WELLS AND EXC AVATIONS

Cross References to Related Sections
Expermental test and artesian wells see ch 42 art 5

19-2501 to 19-2503 [L 1913 ch 153 $8 \$ 1$ to 3 R S 1923192501 to 192503 Re pealed L 1063 ch 179 \& 1 June 30]

19-2504 Enclosure filling or covering abandoned wells mines or excavations com plant notice That all unused and aban doned wells pits mines or other excavations situated upon land not enclosed upon com plaint in writing being made by any citizen to the owiner of the land or his agent whereon such w 11 pit mine or other excavation is situated shall be enclosed or filled up or securely covered by such owner or agent wthin twenty days from the date of the service of said notice If the owner or agent of such land shall not reside in the count) where said land hes then such notice shall be conspicuously posted upon sald land for twenty days [L 1895 ch $360 \$ 1$ May 27 R S 19'3 192504]

Research and Practice Aids

Negligence \int_{42}

C J S Neglyence 878
Notice to landowner of abandoned wells etc Vernons Kansas Forms \$1891

10-2:05 Same enforcement, notice tax levy Upon the falure of the owner or his agent to comply with the provisions of section 1 [192504] of this act withn the time men tioned in said section the party complainins may nonfy the township trustee of the town shap wherin such well pit mine or othen excas ition is situated by the filing with him of a copy of the notice served upon the owner of such hand or his zgent or posted us iforesuld with the date of service ther of
endorsed thereon or if such notice "as posted as aforesand the date when such notice "is posted and the fact that the residence of $t \mathrm{ic}$ landowner or his agent is unhnown and there upon the tounship trustee shall be required forthwith to make a per onal investigation of satd well pit mine or cther excavation and if in his judgment the will pit mune or other excavation shall be dangerous he shall cqusc the same to be filled up or securclv covered and any and all expense incured theren shall be by him dul itemized venfied and returned to the county clerk together with a description of the lund on which such well pit minc or other excavition is situated who shall enter the sume on the tix rolls of suld county aganst the trac of land on which such well pit mine or excavation is situ ted and the same shall become and be a hen upon said premises and hill be collected by the county tre isurer as other taxes and be come a part of the gencral fund [L 1895 ch 360 § 2 May 27 R S 1923192005]

Research and Practice Aids
Notice to countv clerk of filling uncovered well or eveavation Vernons Kansas Forms § 1882

192506 Sime payment of expense in curred by township tru tee The board of county commissioners is hereby authorized to pay out of the general fund of the countr such expense so as aforesand incurred by sard trustce upon the filing b) him of an ttemized and verified woucher ther for with the countv clerk [L 1893 ch 360 \$ 3 Vay 27 R S 1923192506]

Section Maps of the Galena Area Showing Underground Wcrkings and
Hazardous Mıne Openıngs (Legend - see Plate II)

FIGURE B-4 - Known extent of underground workings in sec 15 T 34S R 25E (1 12,000)

FIGURE B-9 - Hazardous mine openings in sec 13, T 34S , R 25E (1 12,000)

FIGURE B-12 - Hazardous mane openings in sec 15 T 34 S R 25E (1 12 000)

APPENDIX C

Tabulations of Mıne Hazards

TABLE C-1 - Open Mine Shafts Adits and Pits

	Location	Site Number	UTM ${ }^{1}$ Coordınates Znne 15		Name	Size and Pleseñ Conulcion	Suggested Kemedial_Action
	T-32S--R-25E- sec^{-24-}	1	-4123630N	355810E	Grassellı \#l Mine	Collapsed 25 ft dia waterfilled in trees depth $?$ moderate hazard	Fencing
	Do	2	4123370N,	355840E	do	```Collapsed 25 ft dia water- filled depth ? partially filled with trash and brush moderate hazard```	do
	Do	3	4123250N,	355865E	do	Collapsed on northwest edge of surface collapse 20 ft dia - 30 ft to water when measured water level varıable high hazard	do
∞	Do	4	4123060N,	355875E	do	```Collapsed 40 ft dia 20 ft deep partly filled with large concrete blocks moderate hazard```	Filling
	Do	5	4122655N	356400E	$\begin{aligned} & \text { Butte-Kan- } \\ & \text { sas Mıne } \end{aligned}$	Collapsed, 40 ft dia 15 ft deep dry low hazard	do
	Do	6	4122635 N	356375E	do	Collapsed 30 ft dia 10 ft deep dry low hazard	do
	$\begin{array}{cc}\text { Do } \\ & \\ \text { T 32S } & \\ & \text { R 25E }\end{array}$	7	$4122175 N$	356280 E	do	Collapsed 50 ft dia 25 ft deep partly filled with trash and brush moderate hazard	do
	T 32S R 25E sec 25	1	4122045 N	356365 E	Acme \#1 Mine	falling $1 n$ on east side 20 ft dia at top 5 ft x 5 ft at top of shaft 30 ft deep dry high hazard	F.11.ng

[^1]TABLE C-1 - Open Mıne Shafts Adits, and Pits--Continued

Location			Site Number	UTM ${ }^{1}$ Coordinates Zone 15		Name	Size and Present rondit_on	Suggested Demedan Actá
T-32S	-R-25E	sec-25	-2-	41-21635N-	-356355E-	$\begin{aligned} & \text { Barnesdall } \\ & \text { \#3 Mine } \end{aligned}$	Collapsed-25 ft dia at top some cribbing left large cottonwood over hole depth 100 ft to water high hazard	Plugging or fencing
	Do	'	3	4121375N,	356355 E	do	Collapsed, 60 ft dia mostly filled with water appears deep high hazard	Fencıng
	Do		4	4121250N,	356385 E	2	Partly collapsed, slab in place $9 \mathrm{ft} \times 12 \mathrm{ft}$ depth 100 ft to water no protection high hazard	Capping or plugging
	Do		5	4121640 N	356260E	Barnesdall \# 3 Mine	Uncollapsed $4 \mathrm{ft} \times 4 \mathrm{ft}$ 30 ft to water hole partly covered by oak tree trunk	Plugging
	Do		6	4120910N	355910E	?	Collapsed 15 ft dıa 50 ft to water in trees fenced high hazard	do
T 32S	R 25E	$\sec 35$	1	4119770N	354480E	HL\&S Mine	Collapsed, 25 ft dıa 20 ft deep water and junk at bottom moderate hazard	Filling
	Do		2	4119760N	354600E	do	Collapsed 60 ft dia 20 ft deep dry low hazard	do
	Do		3	4119580N	354500 E	Robinson Mine	Collapsed, 20 ft dıa 10 ft deep dry low hazard	do
	Do		4	4119550N	354650E	do		do
	Do		5	4119205N,	355135 E	,	Collapsed, 8 ft dıa 30 ft deep to water hıgh hazard	Plugging

TABLE C-1 - Open Mıne Shafts Adıts and Pıts--Continued

	Location	$\begin{gathered} \text { Sıte } \\ \text { Number } \end{gathered}$	$\begin{gathered} \text { UTM }^{1} \text { Coordinates } \\ \text { Zone } 15 \\ \hline \end{gathered}$	Name	$\begin{gathered} \text { Size and } \\ \text { Drescre Co-dita } \end{gathered}$	Suggested रemealal Action
	T $33 \mathrm{~S}-\mathrm{R}-25 \mathrm{E}-\mathrm{sec}-11$	1	-4115980N-355140E	?	Open uncollapsed 8×16 ft concrete collar water at 15 ft moderate hazard	Capping
	T 33S R 25E sec 13	1	4114505N 355615E	Arena Mine	Collapsed, 30 ft dıa 15 ft deep dry low hazard	Filling
	Do	2	4114230 N 355840 E	$\begin{aligned} & \text { Cincin- } \\ & \text { natı Mine } \end{aligned}$	Collapsed 25 ft dıa 10-15 ft deep dry low hazard	do
	Do	3	4114150N, 355830E	do	Collapsed 25 ft dia $10-15$ ft deep partially filled with trash low hazard	do
	Do	4	4114070N 355790E	do	Collapsed 25 ft dia 10-15 ft deep dry low hazard	do
	Do	5	4114160N 355455E	Spring River Mine (2)	Collapsed, 50 ft dia waterfilled next to railroad trestle low hazard	do
ω	Do	6	4114070N, 355345E	Thomas 'D Mine	Collapsed, 30 ft dia 10-15 ft deep, $2 n$ trees low hazard	do
	Do	7	4114020N, 355390E	do	```Collapsed 20 ft dia water at l0 ft steep sides moderate hazard```	do
	Do	8	4114030N, 355495E	Spring River Mine (${ }^{(2)}$	Collapsed 25 ft dıa water-filled moderate hazard depth ?	Filling or fenc1ng
	Do	9	4114020N 355555L	do	Collapsed 20 ft dia lo- $\begin{aligned} & 15 \mathrm{ft} \text { deep dry low } \\ & \text { hazard }\end{aligned}$	FIlling
	T 335 R 25E sec 15	1	4115320N 352145E	2	Collapsed 50 ft dıa 15 ft deep water at bottom moderate hazard	Filling
	Do	2	4115105N 352195E	$\begin{aligned} & \text { Crestlıne } \\ & \text { Mines } \\ & \hline \end{aligned}$	Collapsed 30 ft dia 15 ft deep dry low hazard	do

TABLE C-1 - Open Mine Shafts Adits and Pits--Continued

Location			Site Number	UTM 1 Coordinates 7nne 15		$\mathrm{a}^{\text {me }}$	Size and Fresent Condition	Suggested Remedial Action
- -33S-	-R-25E-	sec 15	3	$4114720{ }^{-}$	351975 E	$\begin{aligned} & \text { Crestline } \\ & \text { Mines } \end{aligned}$	Collapsed 60 ft dia water-filled depth ? moderate hazard	Fencing
	Do		4	4114760N	352435E	do	Collapsed, 15 ft dia 30 ft to water in trees no protection high hazzard	Pluggang
	Do		5	4114775N	352830E	Glendale Mine	Collapsed, 40 ft dia $10-$ 15 ft deep water at bottom moderate hazard	Filling
	Do		6	4114720N	352910F	do	Collapsed 25 ft dia 20 ft deep dry moderate hazard	do
	Do		7	4114620N,	352895E	do	Collapsed, 20 ft dia 80-100 ft deep to water in trees partly covered by dead trees high hazzard	Plugging or Fenc ing
	Do		8	4114090N	352830E	$\begin{aligned} & \text { Crestline } \\ & \text { Mınes } \end{aligned}$	```Collapsed 15 ft dia 80 ft deep to water in trees near road high hazard```	do
T 335	R 25E	sec 16	1	4114690N	351820E	Ellis Mine	Collapsed 30 ft dia 15 ft deep dry low hazard	Filling
T 335	R 25E	$\sec 22$	1	4114010N	352050 E	Allie Moore Mines (2)	collapsed 100 ft dia 20 ft deep partly filled with water moderate hazard	Fencing
	Do		2	4113985 N	352825E	do	$110 \times 150 \mathrm{ft} 60 \mathrm{ft}$ deep dry used as trash dump near county road moderate hazard	do

TABLE C-1 - Open Mıne Shafts Adıts, and Pits-Continued

	Location	Site Number	UTM ${ }^{1}$ Coordinates Znne 15	$\mathrm{a}^{\text {ma }}$	Size and Eresent Conaition	Suggested Remedial-Action
	T-33S-R-25E-sec-22-	3	-4113850N, 352025E	Allie Moore Mines (2)	Collapsed, $120 \times 150 \mathrm{ft}$ water-filled depth ? moderate hazard	Fencing
	Do	4	4113585N, 352080E	\rightarrow	Collapsed, 30 ft dia 10 ft deep partially filled with Junk low hazard	Filling
	Do	5	4113590N, 352085E	?	Collapsed, 15 ft dia 10 ft deep dry trees in bottom low hazard	do
	Do	6	$4113415 \mathrm{~N} \quad 353340 \mathrm{E}$,	Collapsed 25 ft dıa 10 ft deep dry low hazard	do
	T 335 R 25E sec 23	1	4113635N, 355160E	2	Collapsed 40 ft dia 20 ft deep partially filled with Junk low hazard	Filling
$\underset{\sim}{\sim}$	Do	2	$4113165 \mathrm{~N}, 354790 \mathrm{E}$	Haystack Mane	Collapsed, 30 ft dıa 20 ft to water covered by trees and brush moderate hazard	do
	Do	3	4113155N, 354885E	do	Collapsed 30 ft dia 25 ft to water dead trees over top moderate hazard	do
	Do	4	4113130 N 354825E	do	$\begin{aligned} & \text { Collapsed } 100 \mathrm{ft} \text { dıa } 20 \mathrm{ft} \\ & \text { deep dry low hazard } \end{aligned}$	None
	Do	5	4l12880N, 354615E	Hubbard Mine (${ }^{2}$)	Covered by brush depth ? high hazard	Plugging or filling
	Do	6	4112850N 354585E	do	nnon mocllapsed 5 a 5 fl wood timbers in place water at 10 ft water lıne still in place high hazard	Capping or rilling
	Do	7	4112815N 3546055	do	Open partly collapsed head frame still in place water at 10 ft high hazard \qquad	Plugging or filling

TABLE C-1 - Open Mine Shafts Adits and Pıts--Continued

TABLE C-1 - Open Mine Shafts Adits, and Pıts--Continued

TABLE C-1 - Open Mine Shafts, Adits and Pits-Continued

	Location	Site Number	UTM ${ }^{1}$ Coordınates Zone 15		Name	$\begin{gathered} \text { Size and } \\ \text { nresent Cunulloun } \end{gathered}$	Suggested Remedial_Action
	T-34S-R-23E-sec-36-	1	-4101035N	$335770 E^{-}$	$\begin{aligned} & \text { Garrett } \\ & \text { inne } \end{aligned}$	Collapsed, 20 ft dia depth over 100 ft , high hazard	$\begin{aligned} & \text { Fencing or plug- } \\ & \text { ging } \end{aligned}$
	T $34 \mathrm{~S}, \mathrm{R} 24 \mathrm{E}$ sec 26	1	4101745N	344560 E	?	Collapsed, 25 ft dia 10 ft deep contalns car body low hazard	Filling
	Do	2	4101690N,	344635E	$?$	Collapsed 30 ft dıa 10-15 ft deep contains trash low hazard	do
	Do	3	4101580N	$344220 E$	$\begin{aligned} & \text { Little } \\ & \text { Otis } \\ & \text { Mine (?) } \end{aligned}$	Collapsed 25 ft dıa filled with water moderate hazard	do
$\stackrel{\infty}{\infty}$	Do	4	4101390N	343880 E	$\begin{gathered} \text { HH\&H } \\ \text { Mine } \end{gathered}$	2 collapsed shafts 20-25 ft dia south one waterfilled with old hoisting frame collapsed over it north one 10-15 ft deep dry moderate hazard	do
	Do	5	4101360 N	343985E	do	Collapsed, 80 ft dia 10-15 ft deep contains water at times trash dump on east side moderate hazard	do
	Do	6	$4101325 N$	343890 E	do	Collapsed 50 ft dıa contains large slab of concrete water at 8 ft apoeara depn moderate hazard	do
	Do	7	4101325 N	343925 E	do	Collapsed 20 ft dia 10-15 ft deep dry low hazard	do
	Do	8	$4101315 N$	343950 E	do	Collapsed 40 ft dia $10-15$ ft deep half filled with boulders low hazard	do

TABLE C-1 - Open Mine Shafts, Adits and Pits--Continued

TABLE C-1 - Open Mıne Shafts Adits, and Pits--Continued

TABLE C-1 - Open Mıne Shafts, Adits and Pits--Continued

TABLE C-1 - Open Mine Shafts Adits and Pits--Continued

TABLE C-1 - Open Mıne Shafts Adits and Pits--Continued

	Locatıon	Site Number	UTM ${ }^{1}$ Coordinates Zone 15	Name	$\begin{gathered} \text { Size and } \\ \text { Present Cond,tion } \end{gathered}$	Suggested ne-cuiad action
	T 34S -R 25E -sec -13-	6	$-4105725 \mathrm{~N}-356060 \mathrm{E}^{-}$?	Collapsed $10 \mathrm{f} \overline{\mathrm{t}}$ dia at top narrows to 6 ft dia 10 ft to water high hazard	Plugging
	Do	7	4105710N 356080E	?	Collapsed, 6 ft dıa 10 ft to water high hazard	do
	Do	8	4104880N 355015E	Southside Mine	Collapsed 20 ft dia narrows to 6 ft dıa 10 ft deep dry low hazard	Filling
	Do	9	4104900N 355070E	do	Collapsed 15 ft dia at top narrows to 6 ft 40 ft deep dry high hazard	Plugging
$\stackrel{\bullet}{\omega}$	Do	10	4104900N, 355105E	do	Collapsed 15 ft dıa narrows to 6 ft 20 ft deep dry high hazard	do
	Do	11	4104870N 3551005	do	Collapsed 10 ft dıa narrows to 6 ft 30 ft deep dry high hazard	do
	Do	12	4104875N, 355130E	do	Collapsed, 6 ft dia 30 ft deep dry, mine roof at 15 ft hıgh hazard	do
	Do	13	4104870N, 355150E	do	Collapsed 15 ft dıa at top narrows to 6 ft dia 30 ft deep dry mine roof at 15 ft high hazard	do
	Do	14	4104860N 355140E	do	Collapsed 15 ft dıa enters mine room at shallow depth to west high hazard	do

TABLE C-1 - Open Mıne Shafts Adıts and Pıts--Continued

TABLE C－1－Open Mine Shafts Adits，and Pits－－Continued

	hucaliuis		Site ivumper	UTM ${ }^{1}$ Coordinates Zone 15	Name	Size and Present－Condition	Suggested Remedial－Action
$\stackrel{0}{0}$	T 34S	R 25E，sec 13	24	4104730 N 355320 E	Southside Mine	Collapsed 15 ft dia at top narrows to 6 ft 30 ft deep dry par－ tıally blocked by con－ crete slab high hazard	Plugging
		Do	25	4104710N 355320E	do	Collapsed 10 ft dia mine roof at 15 ft depth 30 ft dry high hazard	do
		Do	26	4104710N，355330E	do	Collapsed 20 ft dia mine roof at 10 ft depth 30 ft dry high hazard	do
		Do	27	4104685N，355410E	？	Collapsed， 25 ft dia 15 ft deep dry moderate hazard	Filling
		Do	28	4104685N 355455E	，	Collapsed 20 ft dia at top narrows to 8 ft 25 ft deep dry high hazard	Plugging
		Do	29	4104665N，355470E	，	Collapsed， 8 ft dia 30 ft deep dry high haz－ ard	do
		Do	30	4104700N，355495E	？	Collapsed， 20 ft dıa at top narrows to 6 ft 20 ft deep dry hıgh「aでaえ	Filling
		Do	31	4104675N 355540E	？	```Collapsed 25 ft dia narrows to 6 ft 30 ft deep to water high haz- ard```	Plugging

TABLE C-1 - Open Mine Shafts Adits and Pits--Continued

TABLE C-1 - Open Mine Shafts Adits, and Pits--Continued

TABLE C-1 - Open Mine Shafts, Adits and Pits--Continued

TABLE C-1 - Open Mine Shafts Adits and Pits--Continued

TABLE C-1 - Open Mıne Shafts Adıts and Pıts--Contınued

	Location	Site Number	UTM Coordinates zone 15	Name	Size and Present Cond_t_on	Suggested Demedal nctan
$\stackrel{\vdash}{8}$	T-34S-R-25E-sec-14	24	4104970N, 353445 E	$\begin{aligned} & \text { Illinös } \\ & \text { Lead \& } \\ & \text { Zinc } \\ & \text { Mines } \end{aligned}$	Collapsed in chat pile 40 ft dia at top narrows to 10 ft depth 20 ft to water high hazard	Filling
	Do	25	4104955N 353440E	do	Collapsed 20 ft dia 10 ft deep to water high hazard	do
	Do	26	4104950N 353430E	do	Collapsed 15 ft dıa narrows to 6 ft 20 ft deep to water cribbing at bottom high hazard	do
	Do	27	4104950N, 353450E	do	Collapsed 15 ft dia 10 ft deep to water high hazard	do
	Do	28	4104920N, 353525E	do	Collapsed, 5 ft dia 15 ft deep to water high hazard	do
	Do	29	4104925N 353560E	do	Collapsed 5 ft dia 15 ft deep to water high hazard	do
	Do	30	4104870N, 353505E	do	Collapsed 12 ft dia narrows to 6 ft 20 ft deep dry connects to collapse to east high hazard	do
	Do	31	4104875N, 353540 E	do	Collapsed 20 ft dia narrows to 6 ft 20 ft deep to water high hazard	do
	Do	32	4104880N, 353630 E	do	Collapsed 25 ft dia narrows to 6 ft 15 ft deep to water water at top of shaft moderate hazard	do
	Do	33	4104875N 353670E	do	Collapsed 25 ft dia 10 ft deep to water moderate hazard	do

TABLE C-1 - Open Mine Shafts Adits and Pats--Continued

	Location	Site Number	UTM 1 Coordınateszone 15		Name	Size and Present Condition	Suggested Remedial Action
	$\bar{I} 345 \mathrm{~K}<5 \mathrm{t}, \sec 14$	-34	4104875N	-353690E-	```Illınols```	Collapsed-6-ft-dıa - $15-\mathrm{ft}$ deep to water high hazard	Filling
	Do	35	4104825N	353660E	do	Collapsed, 10 ft dia narrows to 6 ft 1.5 ft deep dry some cribbing high hazard	do
	Do	36	4104755 N	353620E	do	Collapsed 20 ft dia at top 20 ft to water high hazard	do
	Do	37	4104705 N	353455 E	do	Collapsed 20 ft dia narrows to 8 ft dıa 30 ft deep dry high hazard	Plugging
$\stackrel{-}{\circ}$	Do	38	4104705 N ,	353560 E	do	Collapsed 20 ft dia narrows to 8 ft 30 ft deep to water hıgh hazard	do
	Do	39	4104640 N	353570 E	Peacock Galena Mıne	Collapsed 15 ft dia 30 ft to water high hazard	do
	Do	40	4l04585N	353585E	do	Collapsed 6 ft dia 35 ft deep to water high hazard	do
	Do	41	4104535N	353600E	do	$8 \times 10 \mathrm{ft} 10 \mathrm{ft}$ deep chat-filled low hazard	Filling
	Do	+2	$4+0_{4}+2 \mathrm{O}_{1}$	$353565 \pm$	-	collapsed 18 ft dia narrows to 10 ft 30 ft deep dry high hazard	Plugging
	Do	43	4104380 N,	353615 E	2	Collapsed 10 ft dia narrows to 6 ft dia 30 ft deep dry high hazard	do
	Do	44	4104400N	353800E	?	Collapsed 8 ft dıa 20 ft deep to water connects to mine collapse to south high hazard	do

TABLE C-1 - Open Mine Shafts Adits and Pits--Continued

	Tocation	Site Nimher	UTM ${ }^{1}$ Coordınates Znne 15		Name	$\begin{aligned} & \text { Slze and } \\ & \text { Present cond_t_on } \end{aligned}$	Suggested Demedal nctaon
$\stackrel{\sim}{\circ}$	T 34 S R $25 \mathrm{E}, \mathrm{sec} 14$	45	4104445 N	$353765{ }^{-}$?	Collapsed 10 ft dia filled to 10 ft dry low hazard	Filling
	Do	46	4104495N,	353685E	$?$	Collapsed, 6 ft dıa 20 ft deep to water connects with mine room high hazard	Plugging
	Do	47	4104510N	353680 E	?	Collapsed, 40 ft dıa opens to mine room water at depth of 20 ft high hazard	Filling
	Do	48	4104525N,	353665E	,	Collapsed, 6 ft dıa 30 ft deep to water high hazard	Plugging
	Do	49	4104525N,	353650E	?	do	do
	Do	50	4104530 N	353635E	?	```Collapsed 25 ft dia at top, narrows to 6 ft 30 ft deep to water high hazard```	do
	Do	51	4104545N	353640 E	?	```Collapsed, 30 ft dıa narrows to 6 ft dia 30 ft deep to water high hazard```	do
	Do	52	4104535 N	353685 E	?	Collapsed 9 ft dıa narrows to 5 ft dia 20 ft deep some cribbing in place high hazard	do
	Do	53	4104555N	353745 E	2	Collapsed 15 ft dıa narrows to $4 \times 4 \mathrm{ft}$ cribbing which is washed out on south side 15 ft deep high hazard	do

TABLE C-1 - Open Mine Shafts Adits and Pits--Continued

TABLE C－1－Open Mine Shafts，Adits and Pits－Continued

Iocatan		$\begin{gathered} \text { Site } \\ n_{u}{ }^{\text {mber }} \end{gathered}$	UTM 1 Coordinates zone 15		name	Slze and Present Condition	Suggested Remedial－Action
T $34 \overline{5}$	R 25 E sec 14	65	4104810N，	353930 E	7	```Collapsed 20 ft dia nar- rows to 6 ft dia 25 ft deep to water high haz- ard```	Plugging
	Do	66	4104805 N ，	$353940 E$	？	Collapsed 20 ft dia nar－ rows to 6 ft dia 10 ft deep Junk in hole mod－ erate hazard	Filling
	Do	67	4104855N	353820 E	？	Collapsed 25 ft dia nar－ rows to 6 ft 15 ft deep to trash and water mod－ erate hazard	do
	Do	68	4104875 N,	353810 E	？	Collapsed， 20 ft dıa nar－ rows to 6 ft 10 ft deep to water moderate haz－ ard	do
	Do	69	4104885N	353820 E	2	Collapsed 5 ft dıa 10 ft deep to water high haz－ ard	do
	Do	70	4104935N，	353975 E	？	Collapsed 30 ft dia nar－ rows to 6 ft dıa 25 ft deep to water high haz－ ard	do
	Do	71	4104985N	354030E	？	Collapsed 6 ft dıa 15 ft ひeep juirn－fıュュeu mouer－ ate hazard	do
	Do	72	4105000 N	354150 E	，	Collapsed 10 ft dia at top narrows to 6 ft 15 ft deep to water high hazard	Plugging

TABLE C-1 - Open Mıne Shafts Adits and Pits--Continued

		Site Number	UTM ${ }^{1}$ Conrdinates zone 15		$\frac{S+z e ~ a n u ~}{\text { and }}$	Suggested
	Location			Name	Present Condition	Remedial Action
$\begin{array}{r} \circ \\ i \end{array}$	T 34S R 25E Sec 14	73	4104935N 354260E	$\begin{aligned} & \text { Southside } \\ & \text { Mine } \end{aligned}$	Open uncollapsed 6×6 ft 30 ft deep dry near main street in grass and weeds hıgh hazard	$\begin{aligned} & \text { Capping or plug- } \\ & \text { ging } \end{aligned}$
	Do	74	4104900N, 354225E	do	Collapsed 10 ft dıa narrow to 6 ft dia 30 ft deep dry high hazard	Plugging
	Do	75	4104830N 354175E	?	```Collapsed 6 ft dia 80 ft```	do
	Do	76	4104860N, 354185E	?	Collapsed, 15 ft dia narrows to 6 ft dia 50 ft deep dry hıgh hazard	do
	Do	77	4104905N, 354165E	?	Collapsed 25 ft dia 30 ft deep dry high hazard	Filling
	Do	78	4104925N, 354130 E	,	Collapsed 5 ft dia 25 ft deep to water high hazard	Plugging
	Do	79	4104890N 354110F	2	Collapsed 5 ft dıa 40 ft to water high hazard	do
	Do	80	4104865N 354105E	2	Collapsed 6 ft dıa 20 ft deep enters room high hazard	do
	Do	81	$4104855 \mathrm{~N}, 354130 \mathrm{E}$	2	Collapsed 8 ff dıユ 5 Cf deep dry high hazard	do
	Do	82	4104830N 354140E	,	Collapsed 15 ft dia at top narrows to 6 ft dia 50 ft deep to water high hazard	do

TABLE C-1 - Open Mine Shafts Adits and Pits--Continued

TABLE C-1 - Open Mine Shafts Adits and Pits-Continued

TABLE C-1 - Open Mıne Shafts Adits and Pits--Continued

	Location	Site Number	UTM ${ }^{1}$ Coordinates Zone 15	Name	Slze and Dresent Condition	Suggested DCmed_à_ mctıuĭ
$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \end{aligned}$	T-34S- ${ }^{-25 E-} \mathrm{sec}^{-14}$	102	4104760N-354500E	Southsıde sine	Collapsed 7 ft dıa 20 ft deep dry hıgh haz- ard	Plugging
	Do	103	4104730N 354500E	do	Collapsed at top 12 ft dia uncollapsed below $4 \times 4 \mathrm{ft}$ cribbing 40 ft deep dry high hazard	do
	Do	104	4104555N 354575E	do	Collapsed, on bridge between collapses 15 ft of roof rock within 75 ft of house high hazard	Filling or plugging
	Do	105	4104575N, 354680E	do	Open 6 ft dia some cribbing partially collapsed 20 ft deep dry high hazard	Pluggıng
	Do	106	4104630N 354690E	do	Open uncollapsed 4×6 ft cribbed 30 ft deep dry high hazard	do
	Do	107	4104645N, 354705 E	do	Collapsed, $15 \times 40 \mathrm{ft}$ at top 8 ft dıa below 50 ft deep dry recelves runoff durıng rains high hazard	do
	Do	108	4104675N, 354705E	do	Collapsed 30 ft dia narrows to 8 ft enters mine room at about 20 ft dry thin roof high hazard	do
	Do	109	4104685N 354695E	do	Collapsed 20 ft dıa narrows to 6 ft enters mine room at 15 ft dry thin roof high hazard	do

TABLE C-1 - Open Mine Shafts Adits and Pits--Continued

	Lucaliuñ			Site rumwer	UTM 1 Coor zone	$\begin{aligned} & \text { dinates } \\ & 15 \end{aligned}$	Name	Slze and Present Condition	Suggested Remedial-Action
$\stackrel{\square}{8}$	T 34S	R 25E	sec 14	110	4104695N,	354680 E	Southside Mine	Collapsed 20 ft dia narrows to 5 ft enters mine room at 20 ft dry thin roof high hazard	Plugging
		Do		111	4104700 N	354645 E	do	Collapsed 35 ft dıa narrows to 7 ft 60 ft deep to water, high hazard	do
		Do		112	4104685N,	354605E	do	Collapsed, 30 ft dıa narrows to 4 ft dia triangular cribbing 60 ft to water hıgh hazard	do
		Do		113	4104705N	354730 E	do	Collapsed, in east end of surface collapse opens to mane room at 15 ft high hazard	Filling
		Do		114	4104735N	354695E	do	Open uncollapsed 4×5 ft cribbed 60 ft deep to water high hazard	Plugging
		Do		115	4104760N	354755 E	do	Collapsed 30 ft dia 50 ft deep to water in chat pile high hazard	Filling
		Do		116	4104790N,	354780 E	do	Collapsed 15 ft dia 25 ft deep in chat pile high hazard	Plugging
		m		117	410^775N	3517105	do	Conapsed 20 fl una 60 70 ft to water high hazard	Filılng or rencing
		Do		118	4104800N	354705 E	do	```Collapsed 40 ft dia 10- 15 ft deep partially filled with trash low hazard```	Filling

TABLE C-1 - Open Mine Shafts Adits, and Pits--Continued

	Location	Site Number	UTM ${ }^{1}$ Coordinates Zone 15	Name	Size and Present Cond.t.on	Suggested Remealal Action
	T 345 K $\angle 5 \mathrm{E}$ sec 14-	119	4104790N - 354685 E -	Southside Mine	-Collapsed 25 ft dia narrows to 10 ft dia 60-70 ft deep to water high hazard	Filling or plugging
	Do	120	4104810N 354640E	do	Collapsed 20 ft dia narrows to $4 \times 6 \mathrm{ft} 40 \mathrm{ft}$ deep dry high hazard	Plugging
	Do	121	4104820N 354610E	do	Collapsed 6 ft dia 40 ft deep dry high hazard	do
	Do	122	4104790N, 354560E	do	Collapsed 20 ft dia narrows to 4 ft dia 50 ft deep to water shaft opening buried beneath trash high hazard	do
	Do	123	4104845N, 354525E	do	Collapsed 20 ft dia 15 ft deep dry moderate hazard	Filling
	Do	124	4104880N, 354545E	do	Collapsed 20 ft dia 15 ft deep dry moderate hazard	do
	Do	125	4104910N, 354560 E	do	Collapsed 10 ft dia 15 ft deep dry high hazard	do
	Do	126	4104920N, 354535E	do	Collapsed 6 ft dıa 30 ft deep dry hiqh hazard	Plugging
	Do	127	4LUAYIUN 3S4S15E	do	Collapsed 6 ft dia 50 ft deep dry hıgh hazard	do
	Do	128	4104930N, 354500E	do	Collapsed 10 ft dia 30 ft deep dry hagh hazard	Pluggang or filling
	Do	129	4104960N 354525E	do	Collapsed 12 ft dıa 10 ft deep dry moderate hazard next to road	Filling

table C-1 - Open Mine Shafts Adits and Pits--Continued

	Location	Site Number	$\begin{gathered} \text { UTM }^{1} \text { Coordınates } \\ \text { Zone } 15 \\ \hline \end{gathered}$		Name	Size and Present Cnndition	Suggested Remedal notaon
	T-34S-R-25E-sec-14-	-1-30-	-4104950N-	-354550E-	Southside Mine	Collapsed $12^{-1} \mathrm{ft}$ dia narrows to 6 ft dia 30 ft deep to water hagh hazard	Plugging
	Do	131	4104935N	354570E	do	Collapsed 6 ft dia 20 ft deep dry high hazard	Pluggang or fil- ling
	Do	132	4104925N,	354590 E	do	Collapsed, 6 ft dia 40 ft deep to water hıgh hazard	Plugging
	Do	133	4104970 N	354585E	do	Collapsed 8 ft dia 20 ft deep dry connects to shallow mine room high hazard	Filling
$\stackrel{\text { 「 }}{\stackrel{\text { F }}{ }}$	Do	134	4104970 N	354600E	do	Collapsed 6 ft dia 20 ft deep dry connects to shallow mine room high hazard	do
	Do	135	4104905N,	354625E	do	Collapsed 6 x 8 ft 30 ft deep high hazard	Plugging
	Do	136	4104855N,	354635E	do	Collapsed 12 ft dia 10 ft deep dry low hazard	Filling
	Do	137	4104885 N	354650E	do	Collapsed 20 ft dia narrows to 5 ft 50 ft deep dry high hazard	Plugging
	Do	138	4104920 N	354655E	do	Collapsed 5 ft dia 40 ft deep dry high hazard	do
	Do	139	4104965N	354665E	do	Collapsed 5 ft dıa 40 ft deep dry enters mine room accessible through collapse \#54 high hazard	do

TABLE C-1 - Open Mıne Shafts Adits and Pits--Continued

TABLE C-1 - Open Mine Shafts Adits and Pits--Continued

TABLE C-1 - Open Mine Shafts Adits and Pits--Continued

TABLE C-1 - Open Mine Shafts Adits and Pıts-Continued

	Location	Site Number	UTM ${ }^{1}$ Coordınates Zone 15	Name	$\begin{gathered} \text { Size and } \\ \text { Drosent cond.tio- } \end{gathered}$	Suggested Remeurdi Accion
	T-34S-R-25E- sec^{-15}	6	4105435 N - 352710 E	?	Collapsed, 4 ft dia 6 ft to water moderate hazard	Filling
	Do	7	4105410N 352770E	2	Collapsed 4 ft dia water at 6 ft moderate hazard	do
	Do	8	4105340N, 352770E	$\begin{aligned} & \text { Enright } \\ & \text { Mine (} 2) \end{aligned}$	Collapsed, 15 ft dıa 10 ft deep dry low hazard	do
	Do	9	4105295N 352730E	?	Collapsed 5 ft dia 15 ft deep to water hıgh hazard	do
	Do	10	4105295N, 352700E	?	Collapsed 10 ft dia narrows to 5 ft dia 15 ft deep dry hıgh hazard	do
	Do	11	4105260N, 352690E	7	Collapsed 10 ft dıa narrows to 4 ft dıa 20 ft deep to water high hazard	Plugging
	Do	12	4105240N 352750	7	Collapsed 20 ft dia 12 ft deep dry moderate hazard	Filling
	Do	13	4105180N 3528105	?	Collapsed 15 ft dia narrows to 5 ft dıa 30 ft deep dry high hazard	Plugging
	Do	14	4105250N, 352805E	2	Collapsed 35 ft dıa partially filled with trash 15-20 ft deep dry low hazard	Fillıng
	Do	15	4105235N 352845E	2	Collapsed 25 ft dia 15 ft deep dry junk in bottom low hazard	do
	Do	16	4105250N, 352855E	?	Collapsed 10 ft dıa 10 ft deep dry how hazard	do

TABLE C-1 - Open Mıne Shafts Adits and Pits--Continued

	Location	Site Nimher	UTM ${ }^{1}$ Coordinates Zone 15		$\mathrm{a}^{-}=$	Size and Present Condition	Suggested Remedial_Action
	T-34S-R-25E, Sec-15	17	$41053 \overline{40} \times$	352900 E	Enright Mine (2)	```Open and partially water- filled llO ft wide 600 ft long depth }>\mathrm{ moderate hazard Open pit```	Filling or fenc1ng
	Do	18	4105450N	353355E	?	Collapsed 10 ft dia 10 ft deep filled with trash moderate hazard	Filling
	Do	19	4105430 N,	353290E	2	Open little collapse 6 x 6 ft 40 ft deep dry hıgh hazard	Plugging
	Do	20	4105395N	353250 E	?	Collapsed 8 ft dia 40 ft to water drift exposed in northeast wall of shaft high hazard	do
$\stackrel{\text { ト }}{\text { ® }}$	Do	21	4105380 N,	353240 E	?	Collapsed 20 ft dia 15 ft deep opens to mıne room on east side 12 ft roof high hazard	do
	Do	22	4105355 N	353290E	2	Collapsed 8 ft dia 40 ft deep dry high hazard	do
	Do	23	4105330N	353260E	2	Collapsed 6 ft dia 20 ft deep dry enters mine room at 15 ft depth drıfts lead east and west tov ladder n^{n} hole ${ }^{n} \mathscr{y}^{\text {h }}$ hazard	do
	Do	24	4105330 N	353225	,	Collapsed 8 ft dıa 40 ft deep dry high hazard	do
	Do	25	4105295N	353220E	?	Collapsed opens into hillside near $R R$ track ladder found near opening depth ? high hazard	do

TABLE C-1 - Open Mine Shafts, Adits and Pits--Continued

TABLE C-1 - Open Mine Shafts Adits and Pits--Continued

	Location	$\begin{gathered} \text { Site } \\ \mathrm{N} \text { _mber } \end{gathered}$	UTM ${ }^{1}$ Coordinates zone 15	a"t	Size and Fresent Condition	Suggested Remedial-Action
$\stackrel{\sim}{\bullet}$	T-34S-R-25E Sec 15	36	4104415N, 352870 E	$\begin{aligned} & \text { Scarlett } \\ & \text { Kıd Mıne } \end{aligned}$	Collapsed, 50 ft dia 20 ft deep partially filled with trash and car boddies moderate hazard	Filling
	T 34S R 25E, sec 22	1	4103565N 353265E	Willıams Mines (?)	Collapsed partly closed opening is bridged by loose rock and dirt 50 ft to water high hazard	Plugging
	Do	2	4103410N 353160E	New Century Mane	Open $4 \times 4 \mathrm{ft}$ wood cribbing in place filled wath water to top depth ? moderate hazard	do do
	Do	3	4103410N 352890E	New York Mine	Collapsed 10 ft dıa at top narrows to 4 ft dia cribbed to within 10 ft of surface on side of cave-in 40 ft to water hıgh hazard	do
	Do	4	4103395N, 352765E	do	Collapsed 40 ft dia narrows to 8 ft 30 ft deep to water high hazard	do
	Do	5	4103395N, 352590E	do	Collapsed 40 ft dia narrows to 5 ft dia 40 ft deep dry crabbing to with_n 20 ft of surfuce in chat pile high hazard	do
	Do	6	4103300N 352785E	do	```Collapsed 50 ft dia at top 40 ft deep to 5 ft dia shaft opening and water level high hazard```	do

TABLE C-1 - Open Mıne Shafts Adits and Pits--Continued

	Incatinn	Site Numher	UTM ${ }^{1}$ Coordinates Znne 15	Name	Size and Present Conditinn	Suggested Remed_al Act_on
$\underset{\sim}{\stackrel{\rightharpoonup}{\circ}}$	T 34 S R 25 E Sec 22	7	$4103315 \mathrm{~N}^{-352820 E^{-}}$	New York Mıne	Cōllapsed 40 ft dia at top narrows to 12 ft 40 ft deep to trash high hazard	Plugging
	Do	8	4103185N 352675E	do	Open, uncollapsed 5×7 ft cribbed to top 30 ft deep high hazard	do
	Do	9	$4103125 \mathrm{~N} \quad 352540 \mathrm{E}$	do	Collapsed 35 ft dia narrows to 10 ft 30 ft to water high hazard	do
	Do	10	$4103085 \mathrm{~N}, 352830 \mathrm{E}$	do	Collapsed 25 ft dia 6 ft deep water-filled moderate hazard	Filling
	Do	11	4103060N, 352830E	do	Collapsed 25 ft dia narrows to 5 ft dıa 20 ft to water high hazard on side of mine collapse	Plugging or filling
	Do	12	4102890N, 352460E	New York Mine (${ }^{\text {) }}$	Collapsed 18 ft dıa at top narrows to 4 ft 40 ft deep dry cribbed to 10 ft below surface high hazard	Plugging
	Do	13	4102685N, 352480E	do	Collapsed 20 ft dia at top narrows to 10 ft dia 40 ft deep to water hıgh hazard	do
	Do	14	4102860N 353130E	New Century Mine	Collapsed 25 ft dıa narrows to $5 \times 5 \mathrm{ft}$ cribbing 20 ft to water high hazard	do
	Do	15	4102800N 353200E	do	Collapsed 30 ft dia at top narrows to 6 ft dia 50 ft deep to water high hazard	do

TABLE C-1 - Open Mine Shafts Adits and Pıts--Continued

	Location		$\begin{array}{\|c\|} \hline \text { Site } \\ \text { Number } \\ \hline \end{array}$	UTM 1 Coordinates Zone 15		Name	$\begin{gathered} \text { Size and } \\ \text { Drescnt cond } \text { on }^{-} \end{gathered}$	Suggested Remeutal hction
$\stackrel{\leftarrow}{N}$	T-34S-25E-sec-22-Do		$-16$$17$	$-4102665 N^{-1} 353155 \mathrm{E}^{-1}$		$\begin{aligned} & \text { New Cen- } \\ & \text { tury Mine } \end{aligned}$	Collapsed 15 ft dia at top narrows to 5 ft dia cribbing begins 15 $f t$ below surface 30 ft deep dry high hazard	Plugging
		Do		4102850 N	353325E	do	Collapsed 25 ft dia narrows to 10 ft dia 30 ft deep to water high hazard	
		Do	18	4102840N	353340E	do	Collapsed 25 ft dia narrows to 6 ft 50 ft deep to water high hazard	do
		Do	19	4102825N	353320 E	do	Collapsed $40 \times 50 \mathrm{ft}$ at surface enters mine room at 30 ft depth water at 40 ft high hazard	Filling or fenc1ng
	T 34 S	R 25E sec 23	1	$4103775 N$,	354715E	2	Collapsed 40 ft dia at surface narrows to 10 ft dia 20 ft to water hagh hazard	Plugging
		Do	2	4103745N,	354750 E	2	Collapsed 40 ft dia 20 ft deep dry Junk at bottom low hazard	Filling
		Do	3	4103720N	354675E	2	Collapsed 25 ft dıa at top narrows to 5×7 ft cribbed shaft water at top of cribbing at depth of 15-25 ft high hazard	Pluarıng
		Do	4	4103670N,	354740 E	?	Collapsed 25 ft dia narrows to 6 ft dia water at 20 ft high hazard	```Plugging or fil- lung```

TABLE C-1 - Open Mıne Shafts Adits and Pits--Continued

TABLE C-1 - Open Mine Shafts Adits, and Pits--Continued

TABLE C-l - Open Mıne Shafts Adits and Pıts--Contınued

Table C-1 - Open Mine Shafts Adits and Pits--Continued

	Location	$\begin{gathered} \text { Site } \\ \text { Number } \end{gathered}$	UTM ${ }^{1}$ Coordinates Zone 15	Name	Size and Present Condataon	Suggested Remealal mction
	T 34S -R 25E , Sec 27-	-1-3-	$-4102205 N-352735 \mathrm{E}^{-}$	\cdots	```Collapsed 25 ft dia nar- rows to 6 ft dra 60 ft deep to water high haz- ard```	Plugging
	Do	14	4102180N, 352715E	2	Collapsed 10 ft dia 50 ft deep to water drift exposed east side of shaft high hazard	do
	Do	15	4102140N 352745E	?	Collapsed 8 ft dia 30 ft deep to water high hazard	do
	Do	16	4102130N 352845E	$?$	Collapsed 6 ft dia 50 ft to water high hazard	do
~	Do	17	4102125N, 353130 E	,	Open uncollapsed 5×5 ft 20 ft deep to water high hazard	do
	Do	18	4102090N, 353105E	$\begin{aligned} & \text { Boston } \\ & \text { Mine (} \end{aligned}$	Collapsed, 6 ft dia 30 ft deep to water enters mane room high hazard	do
	Do	19	4102060N 353085E	$\begin{aligned} & \text { Boston } \\ & \text { Mine } \end{aligned}$	Collapsed 6 ft dia 10 ft deep to water high hazard	do
	Do	20	4102090N, 353025E	do	Collapsed 6 ft dia 50 ft deep to water hiah hazard	do
	Do	21	4102075N, 353025E	do	Collapsed some cribbing $2 \times 3 \mathrm{ft} 50 \mathrm{ft}$ deep to water high hazard	do
	Do	22	4102075N 353010E	do	Collapsed 8 ft dia 40 ft deep to water high hazard	do

TABLE C-1 - Open Mıne Shafts Adits and Pıts--Continued

TABLE C-l - Open Mıne Shafts Adits and Pits--Continued

TABLE C-1 - Open Mine Shafts Adits and Pits--Continued

TABLE C-1 - Open Mine Shafts, Adits and Pits--Continued

	Location	Sate	UTM ${ }^{1}$ Coordinates		S-ze and	Sugges lea
		Number	Zone-15	Name	present Condition	Remedial Action
$\begin{gathered} N \\ \sim \\ \infty \end{gathered}$	T 34S R 25E, sec 27	53	4101985N, 352705E	2	Collapsed, 6 ft dia 20 ft deep dry high hazard	Plugging
	Do	54	4101970N, 352705E	,	Collapsed 6 ft dia 30 ft deep dry high hazard	do
	Do	55	4101950N 352690E	$?$	Collapsed 6 ft dıa 30 ft deep dry enters mine room high hazard	do
	Do	56	4101935N 352680E	2	Collapsed 6 ft dıa 50 ft deep to water high hazard	do
	Do	57	4101965N 352675E	7	Collapsed 6 ft dia 50 ft deep dry high hazard	do
	Do	58	4102065N 352525E	2	Collapsed, 30 ft dıa at top narrows to 6 ft dıa 25 ft deep to water high hazard	do
	Do	59	4102075N, 352505E	2	Collapsed 25 ft dia narrows to 6 ft dıa high hazard	do
	Do	60	4102085N 352530E	$?$	Collapsed 20 ft dia narrows to 6 ft dia some cribbing in place 20 ft deep to water high hazard	do
	Eo	61	4102090N, 352510E	2	Collapsed $40 \times 60 \mathrm{ft}$ at top narrows to 6×10 ft 20 ft to water which appears to be deep high hazard	do

TABLE C-1 - Open Mine Shafts Adits and Pits--Continued

	Location	Site Numher	UTM ${ }^{1}$ Coordinates zone 15	are	Size and Fresent Condition	Suggested Remedial-Action
$\stackrel{\leftarrow}{N}$	$\mathrm{T}-34 \mathrm{~S}, \mathrm{R}-25 \mathrm{E}-\mathrm{Sec} 27$	62	$4102240 \mathrm{~N}, 352425 \mathrm{E}$?	Collapsed 90 ft dia narrows to 5 x 5 ft shaft opening at depth of 40 ft contains trash water-filled to top of shaft high hazard	Plugging
	Do	63	4102115N, 352310E	2	Collapsed 70 ft dia narrows to 20 ft dia at top of exposed mine room 30 ft to water near road hıgh hazard	Filling or fenc1ng
	Do	64	4102110N 352295E	2	Collapsed 20 ft dia narrows to 5 ft dia 30 ft deep to water cribbing in place to within 20 ft of surface high hazard	Plugging
	Do	65	4102100N, 352240E	2	Collapsed 15 ft dia 10 ft deep dry moderate hazard	Fillıng
	Do	66	4101970N 352435E	2	```Collapsed, 5 ft dla 40 ft deep dry cribbed to 10 ft of surface high haz- ard```	Plugging
	Do	67	4101880N, 352565E	2	Collapsed, 12 ft dıa narrows tn 6 ft daa 60 ft deep to water high hazard	do
	Do	68	$4101885 \mathrm{~N}, 352415 \mathrm{E}$?	Open $5 \times 5 \mathrm{ft}$ cribbed 1 n chat pile 35 ft deep to water high hazard	do
	Do	69	4101845N, 352435E	?	Collapsed 20 ft dia narrows to 8 ft did 35 ft deep to water high hazard	do

TABLE C-1 - Open Mine Shafts, Adits and Pits--Continued

TABLE C-1 - Open Mine Shafts, Adits and Pits--Continued

TABLE C-1 - Open Mine Shafts, Adits and Pits--Continued

TABLE C-1 - Open Mine Shafts, Adits and Pits--Continued

	Toration	$\begin{gathered} \text { Site } \\ \mathrm{N}_{\text {_mber }} \end{gathered}$	$\begin{gathered} \text { UTM }^{1} \text { Coor } \\ \text { zone } \end{gathered}$	dinates 5	āe	Size and Fresent Conarition	Suggested Remedial Action
$\underset{\omega}{\omega}$	$\mathrm{T}^{-} 35 \mathrm{~S}, \mathrm{R}^{-} 23 \mathrm{E}^{-}, \sec 2$DoDo	7	4098480 N	335250 E	Semple Mine	Collapsed, 40 ft dıa in large chat pile cribbing to within 15 ft of surface 100 ft deep to water high hazard	$\begin{aligned} & \text { Plugging fenc- } \\ & \text { lng } \end{aligned}$
		8	4098415N	335360 E	Southern Mine	Collapsed 15 ft dia blocked by large concrete blocks but still partly open moderate hazard	Plugging
		9	4098315N	334960E	Muncie Mine	Collapsed 15 ft dıa opening blocked by concrete rubble depth 100 ft to water high hazard	do
	Do	10	4098280N	335040E	do	Open uncollapsed 5×6 ft concrete collar intact wood cribbing at 15 ft depth 100 ft to water high hazard	Plugging or capping
	Do $\begin{array}{rr} \\ & \\ & \\ & -\end{array}$	11	4098230 N	335110E	Semple Mane	Collapsed 50 ft dia concrete slab falling in on south side partially fenced off but fence is down in nlares h_gh hazard	Plugging
	T 35S R 23E sec 3	1	4099455N	332980E	Stebbins Mane	Open uncollapsed 6×12 ft concrete collar intact cribbing is rotted and in poor condition no protection hıgh hazard	Capping or plugging

TABLE C-1 - Open Mine Shafts Adits and Pits--Continued

	Location	Sate Nımher	UTM ${ }^{1}$ Coordınates Zonc 15	IName	Size and Present Condition	Suggested Remedial-Action
$\stackrel{\rightharpoonup}{\omega}$	T-35S-R-23E-sec-3	2	4099160 N 333060 E	$\begin{aligned} & \text { Stebbins } \\ & \text { Mane } \end{aligned}$	Collapsed 30 ft dıa 100 ft deep to water in trees high hazard	Plugging
	Do	3	4099155N, 333105E	Lucky Jew Mine	Collapsed 40 ft dia 20 ft to water high hazard	Filling
	Do	4	4099065N 333680E	Mark Twain Mıne	Open uncollapsed 5×6 ft, concrete collar $1 n^{-}$ tact brush piled over top 100 ft deep to water no protection high hazard	Plugging
	Do	5	4098680N, 333305E	$\begin{aligned} & \text { Lucky Jew } \\ & \text { Mıne } \end{aligned}$	```Collapsed, 20 ft dia 20 ft deep dry partly trash-filled moderate hazard```	Filling
	Do	6	4098680N 333605E	do	Open uncollapsed 5×6 ft wood cribbing pulling away from sides of shaft 80 ft deep to water no protection hıgh hazard	Plugging
	T 35S, R 23 E , sec 10	1	4097510N 333815E	$\begin{aligned} & \text { Big John } \\ & \text { Mine } \end{aligned}$	Collapsed 45 ft dia water-filled deep h_gh nazard	Fencıng
	Do	2	4096880N, 333660E	Jarrett Mıne	Open $5 \times 7 \mathrm{ft}$ cribbed 100 ft to water partially covered by car body high hazard	Plugging
	Do	3	4096840, 332675E	$\begin{aligned} & \text { A D Chubb } \\ & \text { Mine } \end{aligned}$	```Collapsed 40 ft dıa partly filled with water fenced low haz- ard```	Filling

TABLE C-1 - Open Mine Shafts Adits and Pits--Continued

	Location	Site Number	$\begin{gathered} \text { UTM }^{1} \text { Coordınates } \\ \text { Zone } 15 \\ \hline \end{gathered}$	Name	$\begin{gathered} \text { Size and } \\ \text { Dresent Cond.tion } \end{gathered}$	Suggested Peーeaia mctiun
$\underset{\omega}{\omega}$	T-35S- ${ }^{-23 E-}$, sec^{-10}	-4	-4096770N, 332615E	$\begin{aligned} & A^{-} D \text { Chub } \\ & \text { Mıne } \end{aligned}$	Collapsed, 30 ft dia partly water-filled low hazard	Filling
	Do	5	4096680N 333740E	Jarrett Mane	Collapsed 20 ft dia filled with large concrete blocks may be braced 6 ft deep fenced moderate hazard	Filling
	Do	6	4097395N, 333460L	Big John Mine	Open uncollapsed 4×8 ft crıbbed partially covered by loose planks 50 ft deep to water in brush high hazard	Plugging
	T 35S R 23E sec 11	1	4098080N, 334250E	do	Collapsed 50 ft dia adjacent to a western branch of Tar Creek shaft openlng is 8 ft dia partially covered by large boulder when creek flows it is diverted to shaft and goes underground high hazard	do
	Do	2	4098060N, 335180E	$\begin{aligned} & \text { Big Elk } \\ & \text { Mine } \end{aligned}$	Collapsed 20 ft dıa water-fılled moderate hazard	$\begin{aligned} & \text { Fencing or fil- } \\ & \text { lina } \end{aligned}$
	Do	3	4097915N, 334560E	Black Eagle Mıne	Collapsed 20 ft dia contains caved concrete water-filled depth ? high hazard	Plugging or fencing

TABLE C-1 - Open Mine Shafts Adits and Pıts--Continued

	Incation	$\begin{gathered} \text { Site } \\ \mathrm{N}_{\text {_mber }} \end{gathered}$	UTM ${ }^{1}$ Coordinates zonc 15	Name	Size and Present Condition	Suggested Remedial-Action
$\underset{\sim}{\omega}$	$\mathrm{T}^{-} 35 \mathrm{~S}^{-} \mathrm{R}^{-} 23 \mathrm{E}^{--\mathrm{sec}} 11^{-}$	4	$4097815 \mathrm{~N} \quad 334915 \mathrm{E}$	Tar Creek Mine	Collapsed, 20 ft dıa water-filled appears deep moderate hazard	Plugging or fencing
	Do	5	4097775N, 334860E	do	Open uncollapsed 5×7 $f t$ concrete collar in place 80 ft deep dry fenced off high hazard	Plugging
	Do	6	4097665N, 334740E	Tulsa Quapaw Mine	Collapsed, 35 ft dıa 40 ft deep to water hıgh hazard	Plugging or fencing
	Do	7	4097480N 334010E	Robinson Mine	```Collapsed 30 ft dia }8 ft deep dry high haz- ard```	Plugging
	Do	8	4097480N, 3347805	Tulsa Quapaw Mıne	Collapsed $6 \times 12 \mathrm{ft}$ concrete collar undermined 50 ft deep to water high hazard	do
	Do	9	4097460N, 334870E	do	Collapsed, 15 ft dıa 15 ft deep dry low hazard	Filling
	Do	10	4097440N 3353105	Fox Mine	Open collapsed 10×6 ft concrete collar on southeast edge of large mıne cave-in 40 ft deep to water high hazard	Pluggıng
	Do	11	4097390N 334805F	Tul Quapaw Mıne	collapsed 20 ft daa 10 ft deep dry low hazard	Fillıng
	Do	12	4097395N, 334585E	Robinson Mine	Collapsed, 35 ft dia 30 ft deep to water high hazard	Plugging

TABLE C-1 - Open Mine Shafts Adits and Pits--Continued

	Location	Site Number	$\begin{gathered} \text { UTM }^{1} \text { Coorc } \\ \text { Zone } \end{gathered}$	dinates 15	Name	Size and niesent Colluilion	Suggested Kemedial_Action
$\underset{\sim}{\omega}$	T-35S--R-23E-sec- ${ }^{-1 l^{-}}$	13	-4097390N	334470 E	Robinson Mine	Collapsed partially some of concrete collar stıll in place but is undermined $9 \times 12 \mathrm{ft} 80 \mathrm{ft}$ deep to water high hazard	Plugging
	Do	14	4097190N,	334115 E	King Brand Mine	Collapsed, 25 ft dıa 50 ft deep to water high hazard	do
	Do	15	4097180N	334175 E	King Brand Mıne	```Collapsed 25 ft dıa }1 ft deep dry low haz- ard```	Filling
	Do	16	4097220N	334955E	Tulsa Quapaw Wade Mine	Collapsed 25 ft dıa 60 ft deep to water high hazard	Plugging
	Do	17	4097215N	335015E	do	Collapsed 25 ft dıa 60 ft deep to water in trees and brush high hazard	do
	Do	18	4097080N,	334780 E	do	Collapsed 35 ft dia 30 ft deep to water high hazard	do
	Do	19	4097100 N,	334465E	King Brand Mine	Collapsed 20 ft dıa caved under concrete slab on north s_de 30 ft deep to water hıgh hazard	do
	Do	20	4096980N	334205 E	do	Collapsed 25 ft dia 15 ft deep in trees moderate hazard	Filling
	Do	21	4096815 N	333965E	Longacre Mane	```Collapsed 40 ft dia mostly filled with water not deep moder- ate hazard```	do

TABLE C-1 - Open Mine Shafts Adits, and Pıts--Continued

TABLE C-1 - Open Mine Shafts, Adits and Pits--Continued

TABLE C-1 - Open Mine Shafts Adits and Pits--Continued

TABLE C-1 - Open Mıne Shafts Adıts and Pıts--Continued

Inratinn		$\begin{gathered} \text { Site } \\ \mathrm{N} \text { _mber } \end{gathered}$	UTM ${ }^{1}$ Coordinates Zonc 15		are	Size and Fiesent Conaltion	Suggested Remedial_Action
T 35 S	$\mathrm{R}^{-} 23 \mathrm{E}, \mathrm{sec} 15^{-}$	2	4096460 N	333605 E	Jarrett Mine	$\begin{aligned} & \text { Collapsed } 25 \mathrm{ft} \text { dia } 40 \\ & \text { ft deep to water } \\ & \text { fenced high hazard } \end{aligned}$	Plugging
	Do	3	$4096345 N$,	333415 E	do	```Open uncollapsed 6 x 7 ft wood cribbing in place 50 ft deep to water high hazard```	do
T 35S	R 24E sec 2	1	4099335N,	343725E	Homestake Mine	Collapsed, 30 ft dia at surface narrows to 10 ft dia 80 ft deep dry no protection used as trash dump high hazard	do
	Do	2	4099285N,	343695E	do	Collapsed, 100 ft dia filled with turquoiscolored water appears deep moderate hazard	Fencang
	Do	3	4099265N,	344090E	Clara Jane Mine	```Collapsed, }35\textrm{ft dia filled with water appears deep moderate hazard```	Plugging or fencing
	Do	4	4099240N,	344440E	Racetrack Mine	Collapsed, 45 ft dia 20 ft deep dry contains some brush moderate hazard	Filling
	Do	5	4099195N	344000E	Clara Tane Mıne	cnllansed 35 ft d.a water-filled appears deep moderate hazard	$\begin{aligned} & n_{n u g L^{-g}} \text { Ot }_{1} \\ & \text { fencing } \end{aligned}$
	Do	6	4098865N	344245E	do	Collapsed 15 ft dıa 40 ft deep dry in brush hıgh hazard	Plugging
	Do	7	4098780N	343830E	Dines Hartley Mine	Collapsed 40 ft dia 15 deep dry contains large concrete foundatıons collapsed in hole moderate hazard	Filling

TABLE C-l - Open Mine Shafts Adits and Pits--Continued

TABLE C-1 - Open Mine Shafts, Adits and Pits--Continued

TABLE C-1 - Open Mine Shafts Adits, and Pits--Continued

	Tocation	Site N mber	$\begin{gathered} \text { UTM } \begin{array}{c} \text { Coordinates } \\ 20^{m} e+5 \end{array} \end{gathered}$	name	Size and present condition	Suggested Remedial-Action
$\stackrel{\rightharpoonup}{\Delta}$	$\mathrm{T}^{-} 35 \mathrm{~S}^{-\mathrm{R}^{-} 24 \mathrm{E}-\sec 10}$	8	4096725N 342685E	Peru Mine	Collapsed wood cribbing over top of shaft concrete collar caved in 20 ft dia 50 ft deep dry high hazard	Plugging
	Do	9	4096715N, 342360E	do	Collapsed 45 ft dia 15 to 20 ft deep occasionally water-filled moderately water-filled moderate hazard	Filling
	Do	10	4096710N, 342255E	Euterpe Mıne	Collapsed 45 ft dıa stıll caving takıng in boulder pile to north, hole partially blocked by tree 200 ft deep to water high hazard	Plugging
	Do	11	4096710N, 342205E	do	Collapsed 100 ft dia fenced with warning slgns 200 ft deep to water high hazard	Plugging
	Do	12	4096635N 342245E	do	Collapsed $70 \times 120 \mathrm{ft}$ water-filled appears deep moderate hazard	Plugging or fencing
	Do	13	4096665N 342305E	do	Collapsed 60 ft dia water-fıュュeủ tu near surface appears deep moderate hazard	Pluggang or tencıng
	Do	14	4096540N 3423802	Peru Mıne	Collapsed $20 \times 8 \mathrm{ft}$ partly fenced 200 ft deep dry high hazard	Plugging
	Do	15	4096480N, 342235E	Euterpe Mane	Collapsed 70 ft dıa filled with water to near surface depth 2 moderate hazard	Plugging or fencing

TABLE C-1 - Open Mine Shafts, Adits and Pits--Continued

		Location	Site Number	UTM ${ }^{1}$ Coordinates Zone 15	Name	Size and Present Condi+inn	Suggested Remed_al nctan
$\stackrel{\rightharpoonup}{\Delta}$	T 35 S	-R 24E -sec 11-	-1-	-4097770N-344500E-	$\text { Sonny }{ }^{-B o y}$ Mine	Collapsed 30 ft dıa at surface 80 ft deep dry appears to have been filled on 1981 photography collapse occurred after that date high hazard	Plugging
	T 35S	Do	2	4097640N, 344605E	Hartley Grantham Mine	Collapsed 15 ft dia 1 n trees eroded on east side 100 ft deep to water high hazard	do
		Do	3	4097620N, 344515E	do	Collapsed 20 ft dıa concrete foundation falling in hole 30 ft deep dry high hazard	do
		R 24E sec 12	1	4096350N, 345705E	Conmonwealth No 3 Mıne	$\begin{aligned} & \text { Collapsed } 20 \mathrm{ft} \text { dia } \\ & \text { mostly filled with } \\ & \text { water moderate hazard } \end{aligned}$	Plugging
		Do	2	4096350N, 345775E	do	Collapsed 50 ft dia 15 ft deep to water contains junk and old concrete foundations may be bridged high hazard	do
		Do	3	4096295N, 345755E	do	Collapsed 15 ft deep 3 ft deep to water depth ? moderate hazard	Plugging or filling
		Do	4	4096300N 345715E	do	Open uncollapsed round wood timbers used for cribbing still in place 10 ft deep to water in grass and weeds high hazard	Plugging

TABLE C-I - Open Mıne Shafts, Adits, and Pits-Continued

	Incatinn	$\begin{gathered} \text { Site } \\ \mathrm{N} \text { mber } \end{gathered}$	UTM ${ }^{1}$ Coordinates Zone 25	are	Size and Fieselll Conalion	Suggested Kemedial Action
$\begin{gathered} \stackrel{\leftrightarrow}{*} \\ \stackrel{\sim}{\circ} \end{gathered}$	T 35 S R 24 E Sec 13	1.	$4096235 \mathrm{~N}, 345875 \mathrm{E}$	Harrington Mıne	```Collapsed l5 ft dia concrete slab fallen in dry 10 ft deep low hazard```	Filling
	Do	2	4096200N, 345860E	do	Collapsed 50 ft dia wood holsting frame and concrete fallen into shaft filled with water to near surface moderate hazard	Plugging or fencing
	Do	3	4096055N 345910E	do	Collapsed, $25 \times 35 \mathrm{ft}$ filled with water to near surface some trash, water-murky depth ? moderate hazard	Filling or fenc1ng
	Do	4	4096000N, 345740E	do	Collapsed 40-50 ft dıa water-filled depth ? appears deep moderate hazard	$\begin{aligned} & \text { Fencing or fil- } \\ & \text { ling } \end{aligned}$
	Do	5	4096050N, 345205E	Wade Mine (Commonwealth No 2)	Collapsed 20 ft dia water-filled depth $?$ moderate hazard	do
	Do	6 7	4095995N, 345190E	do	Collapsed, $180 \times 250 \mathrm{ft}$ fn ft deep dr_{2} a ergrown with trees near U S 66 and State Line Road high hazard	Fencing Guardráss
	Do	7	4095960N, 345280E	do	Open uncollapsed shaft $5 \times 5 \mathrm{ft}$ depth 100 ft to water rotten wood cribbing in place on 3 sides high hazard	Capping or pluggıng

TABLE C-1 - Open Mıne Shafts Adits, and Pıts--Continued

TABLE C-1 - Open Mine Shafts Adits and Pits-Continued

TABLE C-2 - Subsidence Events

[^2]TABLE C-2 - Subsıdence Events--Contınued

TABLE C-2 - Subsidence Events--Continued

TABLE C-2 - Subsidence Events--Continued

TABLE C-2 - Subsidence Events--Continued

Location		$\begin{gathered} \text { Site } \\ \text { number } \end{gathered}$	UTM ${ }^{1}$ Coordinates Zone 15		Date of SLbsidence	Size and Present Condition	Suggested Remedial Action
T 33 S	R 25E Sec 15	1	4114880 N	352750 E	Pre-1938	$200^{-1} \mathrm{ft}^{-} \mathrm{d} \mathrm{a} 30$ to 40 ft deep dry trees low hazard	None
	Do	2	4114835N	352840 E	1950-1973	30 ft dia shallow waterfilled low hazard	do
	Do	3	4114645N	352950 E	Pre-1938	40 ft dia 40 to 50 ft deep dry steep walls high hazard	Fencing
	Do	4	4114625N,	352915 E	1938-1973	do	do
	Do	5	4114505N	352850E	Pre-1938	160 ft dıa 40 ft deep some water at bottom ramp cut into southeast side used to water cattle moderate hazard	do
T 33 S	$\text { R 25E Sec } 24$	1	4113885N	355630 E	Pre-1938	```Small,25 ft dia }10\mathrm{ to }1 ft deep dry```	None
T 34 S	R 24E Sec 26	1	4101395 N	344020 E	Pre-1938	Small 25 ft dıa 8 ft deep dry dirt bottom low hazard	Filling
	-Do	2	4101370 N	344040 E	do	90 ft dia 15 to 20 ft deep trash dump flooded at times low hazard	do
	Do	3	4101355 N	344070 E	do	60 ft dıa 15 ft deep dry some trash low hazard	do
	Do	4	$4101370 N$	343970 E	do	20 ft dia shallow dry low hazard	do
	Do	5	$4101385 N$,	343915 L	do	20 ft dia shallow contains olly water low hazard	do
	Do	6	4101355 N	343920 E	do	$\begin{aligned} & 12 \mathrm{ft} \text { dıa } 6 \mathrm{ft} \text { deep } \\ & \text { dry low hazard } \end{aligned}$	do

TABLE C-2 - Subsidence Events--Contınued

Location	Site Number	UTM ${ }^{1}$ Coordinates Zone 15	Date of Subsidence	Sıze and Present Condition	Suggested Remedial Act_on
T $34 \mathrm{~S}-\mathrm{R}-24 \mathrm{E}-\mathrm{Sec}-26$	7--	4101-350N 343935 E	Pre-1938	50 ft dıa 15 ft deep dry near railroad tracks low hazard	Filling
Do	8	4101300N 343960E	do	90 ft dıa 25 ft deep dry within 25 ft of railroad tracks may endanger track in future moderate hazard	```Filling for erosion abate- ment```
T 34 S R 24E Sec 34	1	4101010N 343420E	1938-1950	60 ft dia 10 ft deep water at bottom low hazard	None
Do	2	4100975N, 343450E	do	60 ft dıa 10 ft deep some trees low hazard	Filling
Do	3	4100940N 343450E	do	50 ft dıa 10 to 15 ft deep grown-up in trees some water in bottom low hazard	do
Do	4	4100655N, 343195E	Pre-1973	40 ft dıa 15 to 20 ft deep dry trees growing low hazard	None
Do $-\quad$	5	4100640N, 343215E	1938-1950	40 ft dia 15 to 20 ft deep dry trees in bottom low hazard	do
Do	6	4100670N, 343420E	do	10 ft dıa 5 ft deep dry filled with brush low hazard	do
Do	7	$4100655 \mathrm{~N}, 343510 \mathrm{E}$	1981	30 ft dia 30 ft to water recent collapse under cottonwood tree, 12 ft trunk bridging hole steep sides high hazard area is fenced	Fencing

TABLE C-2 - Subsidence Events--Contınued

TABLE C-2 - Subsıdence Events--Contınued

Location		Site number	UTM ${ }^{1}$ Coordinates Zone 15	Date of bubsidence	Size and _Present_Condition	Suggested Remedial Action
T 34S	R 25E, Sec 11	13	$4106195 \mathrm{~N} \quad 354095 \mathrm{E}$	Pre-1938	140 ft dia 15 to 20 ft deep some water low hazard	do
	Do	14	4106200N 354025E	do	60 ft dia 5 ft deep dry shallow low hazard	do
	Do	15	4106235N, 353890 E	do	$60 \times 160 \mathrm{ft} 10$ to 20 ft deep water-filled low hazard	do
	Do	16	4106140N, 353935E	do	200 ft dia 30 to 40 ft deep may be an open pit partly water-filled clear blue water steep talus slopes very close to major county road	```Guard ramls filling with surrounding material```
T 34S	R 25E , Sec 12	1	$4107065 \mathrm{~N}, ~ 355700 \mathrm{E}$	Pre-1938	$60 \times 120 \mathrm{ft} 20 \mathrm{ft}$ deep dry may not be due to collapse some waste material nearb	None
	Do	2	4106330N, 355660E	do	200 ft dıa 30 ft deep water at bottom partly water-filled partial chat pile to north	Fencıng
T 34S	R 25E Sec 13	1	4104895N, 355045E	Pre-1938	60 ft dia 10 to 20 ft deep steep on east and south sudes opens u゙derground on east side moderately high hazard	Filling
	Do	2	4104825N, 355110E	do	70 ft dia 10 ft deep dry shallow some Junk low hazard	None

TABLE C-2 - Subsidence Events--Continued

Locat.on	Site Number	UTM ${ }^{1}$ Coordinates zone 15	Date of Subsıdence	Size and Fresenc Conaicion	Suggested Remedial Action
$\overline{\mathrm{T}} 34 \overline{\mathrm{~S}} \mathrm{R} 25 \overline{\mathrm{E}}$ Sec 13	3	$4104805 \mathrm{~N}, 355105 \mathrm{E}$	Pre-1938	40 ft dia 5 to 10 ft deep dry shallow low hazard	None
Do	4	4104810N 355065E	do	$150 \times 200 \mathrm{ft} 30 \mathrm{ft}$ deep dry talus slopes low hazard	do
Do	5	4104825N, 355025E	do	50 ft dıa 10 ft deep dry shallow low hazard	do
Do	6	4104810N 355005E	do	$100 \times 150 \mathrm{ft} 30 \mathrm{ft}$ deep dry talus slopes low hazard	do
Do	7	4104780N, 355015E	do	90 ft dıa 10 to 15 ft deep dry talus slopes low hazard	do
Do	8	4104770N 355045E	do	60 ft dıa 10 to 15 ft deep shallow talus slope low hazard	do
Do	9	4104770N, 355120E	do	$200 \times 150 \mathrm{ft} 30 \mathrm{ft}$ deep dry steep on southeast side moderate hazard	Filling
Do	10	4104775N, 3551802	do	150 x 90 ft 10 to 20 ft deep part-filled with chat open to underground on south side moderate hazard	do
Do	11	4104705N, 355145E	do	$90 \times 180 \mathrm{ft} 40 \mathrm{ft}$ deep open to underground on east side drafts in walls on north side dry, steep slopes moder-ate-hıgh hazard	Fencing
Do	12	4104675N, 355065E	do	$30 \times 90 \mathrm{ft} 10 \mathrm{ft}$ deep dry shallow low hazard	None

TABLE C-2 - Subsidence Events--Continued

TABLE C-2 - Subsidence Events--Continued

TABLE C-2 - Subsidence Events--Continued

Location		Site Number	UTM ${ }^{1}$ Coordinates Zone 15		Date of Subsidence	Size and present Condition	Suggested Remedial Action
T 34S	R 25 E Sec 14	1	4105645 N	353545 E	Pre-1938	50 ft dia 20 ft deep dry some trash low hazard fenced off	None
	Do	- 2^{-}	-4105490N,	353485E	do	150 ft diá 20 ft deep dry contains chat and rubble low hazard	do
	Do	3	4105540N	353705E	do	$200 \times 160 \mathrm{ft} 15$ to 20 ft deep dry contains chat and some trash low hazard	do
	Do	4	4105570N	354010E	do	$120 \times 180 \mathrm{ft} 25 \mathrm{ft}$ deep dry partly chat- and rubble-filled near two city streets moderate hazard	Fencing or barricades
	Do	5	4105045N,	353710 E	do	$270 \times 150 \mathrm{ft}$ waterfilled 25 to 30 ft deep blue-clear bottom visible steep rocky sides moderate hazard	$\begin{aligned} & \text { Filling with } \\ & \text { nearby material } \end{aligned}$
	Do	6	4105040N	353785E	do	60 ft dia 10 to 15 ft deep enters underground on north side mostly dry moderate hazard	Filling
	Do	7	4105010 N	353760E	do	$50 \times 70 \mathrm{ft}$ about 20 ft deep mostly waterfilled green-murky bottom not visible moderate hazard	do
	Do	8	$4105005 N$	353805E	do	120 ft dia about 25 to 30 ft deep water-filled green-murky steep sides moderate hazard	do

TABLE C-2 - Subsidence Events--Continued

TABLE C-2 - Subsidence Events--Contınued

TABLE C-2 - Subsidence Events--Continued

TABLE C-2 - Subsidence Events--Continued

TABLE C-2 - Subsidence Events--Continued

TABLE C-2 - Subsidence Events--Continued

Location		$\begin{array}{\|c\|} \hline \text { Site } \\ \text { Number } \end{array}$	UTM ${ }^{1}$ Coordinates Zone 15		Date of Subsidence	Size and Present Condition	Suggested Remedial Action
T 345	R 25E Sec 14	54	$4104970 \mathrm{~N}$	354640E	Pre-1938	$40 \times 90 \mathrm{ft} 20 \mathrm{ft}$ deep enters underaround on east'side- dry moderate hazard	Filling
	Do	55	4104970N	354610E	1938-1950	30 ft dia 5 ft deep dry shallow low hazard	None
	Do	56	4104980N,	354600E	do	do	do
	Do	57	4104995N,	354640E	Pre-1938	$60 \times 150 \mathrm{ft} 20 \mathrm{ft}$ deep dry some steep sides moderate hazard	Fencing filling
	Do	58	4104980N,	3546905	do	50 ft dia 20 ft deep dry some steep slopes moderate hazard	Filling
	Do	59	4104980N,	354735E	do	$40 \times 50 \mathrm{ft} 15 \mathrm{ft}$ deep dry some steep slopes low-moderate hazard	do
	Do	60	4104920N,	354790 E	do	$30 \times 90 \mathrm{ft} 5$ to 10 ft deep dry trash low hazard	None
	Do	61	4104920N,	354850E	do	$40 \times 90 \mathrm{ft} 20 \mathrm{ft}$ deep dry some steep slopes moderate hazard	Filling
	Do	62	4104955N,	354945E	do	$60 \times 110 \mathrm{ft} 20$ to 25 ft deep dry talus slopes low hazard	None
	Do	63	4104910N,	354940E	do	$\begin{aligned} & 50 \times 100 \mathrm{ft} 10 \text { to } 15 \mathrm{ft} \\ & \text { deep dry shallow low } \\ & \text { hazard } \end{aligned}$	do
	Do	64	4104880N	354950 E	do	$\begin{aligned} & 90 \mathrm{ft} \text { dia } 10 \text { to } 15 \mathrm{ft} \\ & \text { deep dry shallow low } \\ & \text { hazard } \end{aligned}$	do
	Do	65	4104875N	354975E	do	$\begin{aligned} & 60 \mathrm{ft} \text { dia } 10 \text { to } 15 \mathrm{ft} \\ & \text { deep dry shallow low } \\ & \text { hazard } \end{aligned}$	do

TABLE C-2 - Subsidence Events--Continued

TABLE C-2 - Subsidence Events--Continued

TABLE C-2 - Subsidence Events--Contınued

TABLE C-2 - Subsidence Events--Contınued

TABLE C-2 - Subsidence Events--Continued

Locatıon	Site Number	UTM 1 Coordınates Zone 15	Date of Subsidence	Size and Present Condition	Suggested Remedial Action
T 34S--R-25ETSec-22	14	-4103050N-352430E	Pre-1950	$\begin{aligned} & 200 \mathrm{ft} \text { dıa } 10 \mathrm{ft} \text { deep } \\ & \text { dry shallow low hazard } \end{aligned}$	Filling
Do	15	4102945N, 352425E	Pre-1950	130 ft dıa 10 ft deep dry shallow low hazard	do
Do	16	4102945N 352480E	do	$100 \times 250 \mathrm{ft} 10 \mathrm{ft}$ deep dry shallow low hazard	do
Do	17	4102950N, 352540E	do	$90 \times 130 \mathrm{ft} 10 \mathrm{ft}$ deep dry shallow low hazard	do
Do	18	4102940N 352585E	Pre-1938	200 ft dıa 40 ft deep water at bottom talus slopes west north and east rock cllff on south side moderate hazard	```Fencing or fil- llng```
Do	19	4102950N, 352650E	do	60 ft dia 10 ft deep dry trash dump low hazard	Filling
Do	20	4102955N 352685E	do	do	do
Do	21	4102685N, 352560E	Pre-1950	20 ft dıa less than 10 ft deep dry low nazard	do
Do	22	4103100N 353340E	Pre-1938	225 x 90 ft 20 ft deep dry trash close to road on east side, moderate hazard	Guard rails filling
Do	23	4103085N, 353315E	do	90 ft dia 10 ft deep dry shallow low hazard	Filling
Do	24	4103020N, 353350E	do	$200 \times 270 \mathrm{ft} 25 \mathrm{ft}$ deep dry talus slopes moderate hazard	do
Do	25	4102945N, 353355 r	do	$180 \times 270 \mathrm{ft} 30 \mathrm{ft}$ deep dry, talus slopes, some trash, close to road on southeast side moderate hazard	Guard rails filling

TABLE C-2 - Subsidence Events-Continued

Location				$\begin{gathered} \text { Site } \\ \text { Number } \end{gathered}$	UTM ${ }^{1}$ Coordinates Zone 15		Date of Subsidence	Slze and Present condition	Suggested Remedial Action
T 345	-R 25E	Sec	22	-26	4102890N,	353340 E	Pre-1938	180 ft dia 40 It deep opens to underground on south side 20 to 30 ft ceiling dry steep sides close to road on southeast side high hazard	$\begin{aligned} & \text { Guard rails } \\ & \text { filling } \end{aligned}$
	Do			27	4102885N,	353280 E	1938-1950	$100 \times 150 \mathrm{ft} 20 \mathrm{ft}$ deep much talus slight underground opening on side moderate hazard	Filling
	Do			28	4102835N	353280 E	Pre-1938	$100 \times 200 \mathrm{ft} 25 \mathrm{ft}$ deep talus slopes opens to underground on south side steep on south side moderate hazard	do
T 34S	R 25E	Sec	23	1	$4103645 N$,	354400 E	Pre-1938	$170 \times 270 \mathrm{ft}$ about 60 ft deep 30 ft deep to ater no protect.on talus and steep slopes adjacent to homes on west and north moder-ate-high hazard	Filling or fencing
	Do			2	4103655N,	354360 E	do	40 ft across 20 ft deep dry shallow some Junk Luw Haz̃aıü	Filling
	Do			3	4103690N	354355 E	Pre-1950	40 ft dia 20 ft deep dry Junk-filled low hazard	do
	Do			4	4103735N	354515 E	Pre-1938	100 ft dia 30 ft deep dry brush and talus close to homes on west and north low-moderate hazard	do

TABLE C-2 - Subsidence Events--Continued

nocatıon		$\begin{gathered} \text { Site } \\ \text { number } \end{gathered}$	UTM ${ }^{1}$ Coordınates Zone 15	Date of Sudsiaence	Size and Present Conaltion	Suggested Remedial Action	
T 34S	R 25E, Sec 23	5	4103755 N 354525E	1938-1950	40 ft dia 15 ft deep dry conical low hazard	Filling	
	Do	6	4103795N, 354530E	do	50 ft dia 25 ft deep conical dry low hazard	do	
	Do	7	4103790N, 354705E	Pre-1938	80 ft dıa 10 to 15 ft deep dry shallow low hazard	do	
	Do	8	4103770N 354605E	do	40 ft dia 10 ft deep dry shallow low hazard	do	
	Do	9	4103705N, 354655E	do	100 ft dia clear blue water 30 to 40 ft deep in part of hole - acts as swallow hole moderate hazard	do	
	Do	10	4103690N, 354695E	do	$60 \times 100 \mathrm{ft}$ filled with blue water about 30 to 40 ft deep steep rocky sıdes high hazard	Fencing	filling
	Do	11	4103705N, 354740E	do	$60 \times 100 \mathrm{ft} 15$ to 20 ft deep some water at bottom not deep rocky cliffs moderate hazard	Filling	
	Do	12	4103640N, 354685E	do	$250 \times 300 \mathrm{ft}$ deep Blue Hole mostly filled with ater - dopth est.matcd at 50 ft steep sides high hazard	Fencing	filling
	Do	13	4103550N, 353775 E	do	150 x 200 ft 40 ft deep dry talus slopes moderate hazard	Filling	
	Do	14	4103550N, 353700E	do	$200 \times 250 \mathrm{ft} 80 \mathrm{ft}$ deep dry talus slopes moderate hazard	do	

TABLE C-2 - Subsidence Events--Contınued

Location	Site Number	UTM ${ }^{1}$ Coordinates Zone 15	Date of Subsidence	Size and Present Condition	Suggested Remedial Action
T 34 S - $\mathrm{R}^{-25 \mathrm{E}}$, Sec -23	-15-	-4103510N- 353680 E	Pre-1938	90 ft dia 30 ft deep dry talus slopes low hazard	Filling -
Do	16	4103540N, 353615E	do	90 ft dia 15 ft deep chat slopes conical dry low hazard	do
Do	17	4103495N, 353615E	do	$\begin{aligned} & 200 \times 300 \mathrm{ft} 30 \mathrm{ft} \text { deep } \\ & \text { dry talus slopes some } \\ & \text { Junk low hazard } \end{aligned}$	do
Do	18	4103460N, 353710E	do	200 x 300 ft 40 ft deep dry chat talus slopes moderate hazard	do
Do	19	4103390N, 353740E	do	$\begin{aligned} & 60 \times 120 \mathrm{ft} 25 \text { to } 30 \mathrm{ft} \\ & \text { deep dry talus slopes } \\ & \text { some junk low hazard } \end{aligned}$	do
Do	20	4103375N, 353730E	do	50 ft dia 15 ft deep dry conical low hazard	do
Do	21	4103370N, 353695E	do	```200 ft dia 25 to 30 ft deep dry talus slopes low hazard```	do
Do	22	4103335N, 353670E	1938-1950	$110 \times 130 \mathrm{ft} 20 \mathrm{ft}$ deep, dry chat slopes low hazard	do
Do	23	4103330N, 353615E	Pre-1938	$100 \times 150 \mathrm{ft} 30 \mathrm{ft}$ deep enters mine on south side lcelling $2 U$ it cnick) dry chat slope on north, steep and rocky on south moderate-hıgh hazard	Fencing filling
Do	24	4103350N, 353565E	do	30 ft dia 10 ft deep dry shallow low hazard	Filling
Do	25	4103335N, 353555 E	do	60 ft dia 10 ft deep dry shallow low hazard	

TABLE C-2 - Subsidence Events--Contınued

	Location	$\begin{gathered} \text { Site } \\ \text { Number } \end{gathered}$	UTM ${ }^{1}$ Coordınates Zone 15	Date of SLbsidence	Size and Present Condit.on	Suggested Remed_al Act.on
T 34S	R 25E, Sec 23	26	4103370N, 353550E	Pre-1938	40 ft dıa $5 \mathrm{ft}^{-}$deep shallow low hazard	Filling
	Do	27	4103345N 353505 E	$\begin{array}{\|l} \text { Pre-1950 } \\ \text { Pre-1981 } \end{array}$	$50 \times 100 \mathrm{ft} 20 \mathrm{ft}$ deep filled after 1950 then collapsed again dry some Junk low hazard	do
	Do	28	4103415N, 353510 E	Pre-1950	60 ft dia 10 ft deep wet bottom shallow low hazard	do
	Do	29	4103405N, 353485E	1938-1950	50 ft dia 10 ft deep dry conical talus slopes low hazard	do
	Do	30	4103395N 353460E	Pre-1950	60 ft dia 10 ft deep dry conical talus slopes low hazard	do
	Do	31	$4103055 \mathrm{~N}, 353365 \mathrm{E}$	Pre-1938	40 ft dia 5 ft deep dry low hazard	do
	Do	32	4102985N, 353360 E	do	40 ft dia 30 ft deep dry steep sides moderate hazard	do
	Do	33	4102850N 353385E	1938-1950	30 ft dıa 6 ft deep Junk-filled close to road moderate-low hazard	```Filling guard rails```
Г 34 S	R 25E Sec 27	1	4102590N 352530L	Pre-1950	60 ft dia 10 to 15 ft deep dry some trash shallow low hazard	Filling
	Do	2	$4102475 N, 352910 \mathrm{E}$	Pre-1938	20 ft dia 10 ft deep dry talus conical low hazard	do
	Do	3	4102450N, 352915E	do	25 ft dia 10 to 15 ft deep dry conical low hazard	do

TABLE C-2 - Subsidence Events--Continued

Location				Site Number	UTM ${ }^{1}$ Coordinates Zone 1.5	Date of Subsidence	Size and Present Condition	Suggested Pemed_al Action	
T 34S	R 25 E	Sec	27	4	4102290N, 353255E	Pre-1938	90 ft dia 20 ft tō water steep sides enters underground on south side hıgh hazard	$\begin{aligned} & \text { Fencing } \\ & \text { filling } \end{aligned}$	
	Do			5	4102000N, 352785E	do	$60 \times 120 \mathrm{ft} 20 \mathrm{ft}$ deep partly filled with talus opens to underground on northeast side moderate-hıgh hazard	Fillıng	
	Do			6	4102180N, 352475E	Pre-1950	100 ft dia 35 ft deep dry chat sides moderate hazard	do	
	Do			7	$4102205 \mathrm{~N} \quad 352460 \mathrm{E}$	do	50 ft dia 10 ft deep dry shallow low hazard	do	
	Do			8	4102215N, 352420E	do	$30 \times 40 \mathrm{ft} 10 \mathrm{ft}$ deep dry some trash low hazard	do	
	Do			9	4102075N, 352270E	Pre-1938	$140 \times 160 \mathrm{ft} 15 \mathrm{ft}$ deep water at bottom acts as swallow hole for creek flowing in from west low hazard	do	
T 35 S	R 23E	Sec	2	1	4098210N, 334940E	1950-1973	$220 \times 430 \mathrm{ft} 50$ to 60 ft deep water at northeast and southwest end waterfall north side close to road--occurs along course of Tar Creek moderatehigh hazard	Fencıng	
T 35S	R 23E	Sec	10	1	4097430N, 333390E	1938-1950	Small old drill hole probably 4 ft dia shallow dry low hazard	Fillıng	

TABLE C-2 - Subsidence Events--Continued

TABLE C-2 - Subsidence Events--Continued

Location				Site a urber	UTM ${ }^{1}$ Coordınates zone 15		Date of S.ubs-dence	Size and Present Condition	Suggested Remedial Action
T 35 S	R 23E	Sec	13	2	4096425 N,	336335E	Pre-1938	50 ft dıa $15^{-} \mathrm{ft}$ deep contalns trash and some water moderate hazard	Filling
	Do			3	4096410 N	336295E	1951-1973	30 ft dıa less than 10 ft deep contains trash occasional water low hazard	do
	Do			4	4096145N,	336880E	1938-1950	140 ft dıa 60 ft to water no protection close to State Line Road surrounded by trees and high grass floating trash high hazard	Fencing
T 35S	R 24E	Sec	2	1	4099360N,	343660E	do	200 ft dıa 60 ft deep some water at bottom 200 ft from hıghway moderate-hıgh hazard	do
	do			2	4099320 N	344530 E	Pre-1938	20 ft dia 10 ft deep small in trees low hazard	None
	Do			3	4098560N,	343830E	do	$60 \times 120 \mathrm{ft} 30 \mathrm{ft}$ deep used as landfill mostly filled with chat and trash originally larger low hazard	```Contınue fllling restricted development```
T 35S	R 24E	Sec	3	1	4098410 N	343080 E	1938-1950	6 ft dia shallow waterfilled low hazard	None
	Do			2	4098400N	343060E	do	6 ft dia shallow waterfilled low hazard	do
	Do			3	4098185 N	343525 E	do	15 ft dia 6 ft deep water-filled low hazard	do

TABLE C-2 - Subsıdence Events--Contınued

	Locatıon	Site Number	UTM1 Coordinates zone 15^{-}	Date of Subsidence	SIze and prēeneñ Coñdıtion	S-ggested Remédiāl Action
	T 35S , R 24L Sec 7	1	4096650 N 337175 E	1950-1973	$150 \times 300 \mathrm{ft} 60 \mathrm{ft}$ deep fenced off some water at bottom still caving along sides--will get larger moderate hazard	Fencing--fences may have to be moved out
	Do	2	4096605N, 337235E	do	60 ft dia shallow along old mine road waterfilled low hazard	Observatıon
	Do	3	4096585N, 337210E	do	20 ft dia 10 ft deep along old mıne road water-filled low hazard	Fencing
$\underset{\sim}{\bullet}$	T 35S R 24E Sec 10	1	4096780N, 342520E	Pre-1938	300 ft dıa 80 to 100 ft deep steep rocky sides area fenced brown water at bottom depth varies hıgh hazard	Fencing
	Do	2	4096775N, 342335E	Pre-1973	One of 7 small collapses 5-25 ft in dia and less than 10 ft deep in center of $5 W 1 / 4$ most are water-filled close to the surface low hazard	Not especially dangerous but should be watched
	Do	3	4096735N, 342315L	do	do	do
	Do	4	4096740N 342335E	do	do	do
	Do	5	4096740N 342350E	do	do	do
	Do	6	4096690N 342320E	do	do	do
	Do	7	4096690N, 342310E	do	do	do
	Do	8	4096800N 342290E	do	do	do

TABLE C-2 - Subsıdence Events--Contınued

	Location				$\begin{gathered} \text { Site } \\ \text { Number } \end{gathered}$	UTM ${ }^{1}$ Coord Zone	darates 15	Date of Subsidence	Size ana Present Condition	$\begin{aligned} & \text { Suggested } \\ & \text { Remedial Action } \end{aligned}$
	T 35S	R 24E	Sec	10	9	4096700 N	342610 E	1938-1950	$170 \times 300 \mathrm{ft}$ about 40 ft deep just north of larger collapse in fenced and posted area no protection sometimes holds water moderate hazard	Fencıng
$\stackrel{\vdash}{\infty}$		Do			10	4096620N,	342600 E	1938-1950	$450 \times 650 \mathrm{ft} 100 \mathrm{ft}$ deep steep-walled rocky largest in district some water at bottom varies in depth and color--redbrown to yellow some drifts visible in walls high hazard	Fencing
		Do			11	4096650 N	342730 E	do	40 ft dia (depth $\geqslant \mathrm{fll}-$ led with brush low hazard	Filling
	T 35 S	R 24E	Sec	11	1	4097700N,	344530E	Pre-1938	$130 \times 350 \mathrm{ft} 80 \mathrm{ft}$ deep some water at bottom may connect to mane on northeast side trees growing at bottom on east side area fenced mllanse not fenced high hazard	Fencıng
		Do			2	$4097575 N$,	344580 E	do	200 x 250 ft 30 ft to water 60 to 80 ft deep stocked with carp high hazard	do

TABLE C-2 - Subsidence Events--Continued

TABLE C-3 - Chat Piles and Taılings Ponds

[^3]TABLE C-3 - Chat Pıles and Tailıngs Ponds-Contınued

	Ocation	Site Number	UTM1 Coord_nates Zone 15	Name	$\begin{gathered} S+z 0 \text { and } \\ \text { Present Condition } \end{gathered}$	Suggesteu Remedial Action
T 34S	R 24E sec 35	3	$4100300 \mathrm{~N}, 343680 \mathrm{E}$	Stoskopf Mıne	Tailings pond area 18 acres still in use in chat reclaiming operation using mine water to wash and sort chat contalns iron-stalned tall water	None
	Do	4	4100130N, 343770E	Brewster Mıne	Irregular-shaped remnants of chat pile being actively reclaimed	do
T 34 S	R 25E sec 12	1	4106975N 355790E	Buckeye Mine	Chat pile 150 ft dia 20 ft high partially reclaımed	Reclamation
	Do	2	4106450N, 355720E	?	Chat pile, $150 \times 250 \mathrm{ft}$ on a hillside up to 20 ft high	Reclamation
T 34 S	R 25E sec 11	3	4106430 N 354470 E	do	Tailings pond area 09 acres low embankment contains small amount of water, no hazard to downstream areas	None
	Do	4	4106460N, 354300 E	Empire Mane	Chat pile irregularly shaped mostly reclaimed	Reclamation
	Do	5	4106250N, 353940E	do	Chat pile about 400 ft dia 10-15 ft hıqh has been leveled off during reclamation	do
	Do	6	4106180N, 353915E	do	```Chat pile 90 x 220 ft contalns some coarse material partially vegetated```	```Use to fill adjacent open pit```

TABLE C-3 - Chat Pıles and Tailings Ponds--Continued

Locatıor		$\begin{array}{\|c\|} \text { Site } \\ \text { Number } \end{array}$	$\begin{gathered} \text { UTM }^{1} \text { Coordinates } \\ \text { Zone } 15 \end{gathered}$	Name	Size and Present Conaltion	Suggested Kemedial Action
T 34S	R 25E sec 11	7	4106100 N 353900 E	Empire Mine	```Chat pile 130 x 360 ft contalns some coarse material partially vegetated```	```Use to fill adjacent open pit```
T 34S	R 25E sec 13	8	4105600N, 356160E	Merchants Minıng Co	Chat pile 150 ft dia 20-30 ft high partially reclaımed on NE sıde	Reclamation or shaft filling
T 34S	R 25E sec 14	9	4105650N, 354500E	$\begin{aligned} & \text { Elenita } \\ & \text { Zinc Co } \end{aligned}$	Chat pile 180 ft dia on hillside variable height	Reclamation
T 34 S	R 25E sec 15	10	4105660N, 352640E	Henry Weyman Bonanza Mın1ng Co	Chat pile 300 ft dıa $40 \mathrm{ft} \mathrm{hıgh} \mathrm{partially}$ reclaımed on N side	do
	Do	11	4105510N 352670E	do	Chat pile 90 ft dıa next to Short Creek	do
	Do	12	4105490N 353340E	do	Chat pile $300 \times 450 \mathrm{ft}$ 20 ft high	do
	Do	13	$4105340 \mathrm{~N}, 352950 \mathrm{E}$	do	Chat and boulder pile irregular shap surrounds open pit	Use to fill pit or nearby shafts
	Do	14	$4105130 \mathrm{~N}, 352540 \mathrm{E}$	do	Chat pile, 100 ft dia, 20 ft high, mostly re--laimed	Reclamatıon
	Do	15	4105110N 353090E	do	Chat pile, 180 ft dia 30 ft high	do
	Do	16	4105050N, 353140E	do	Chat pile 150 ft dia partıally reclaımed	do
	Do	17	4104980N, 353090 E	do	Chat pile $60 \times 150 \mathrm{ft}$ mostly reclaimed	do
	Do	18	4104950N 353250E	do	$\begin{aligned} & \text { Chat pile } 150 \times 240 \mathrm{ft} \\ & 30 \mathrm{ft} \mathrm{high} \end{aligned}$	do

TABLE C-3 - Chat Pıles and Tailings Ponds--Continued

TABLE C-3 - Chat Piles and Tailings Ponds--Continued

TABLE C-3 - Chat Pıles and Taılıngs Ponds--Continued

TABLE C-3 - Chat Piles and Tailings Ponds--Continued

TABLE C-3 - Chat Piles and Tailings Ponds--Continued

TABLE C-3 - Chat Piles and Tailings Ponds--Continued

TABLE C-3 - Chat Piles and Taılings Ponds--Continued

	Location			Site Number	UTM ${ }^{1}$ Coordinates Zone 15		Narre		Size and Fresent Conaltion	Suggested Remealal Action
	T 35,	R 24 E	$\sec 3$	1	4098625N,	343450 E	$\begin{gathered} \text { Lıza Jal } \\ \text { Mıne } \end{gathered}$		Tailings pond 05 acres low embankment contains shallow water may be used to water livestock low hazard	None
	T 35S	R 24E	sec 11	2	4097760 N	345010E	$\begin{aligned} & \text { Beck No } \\ & \text { Mine } \end{aligned}$		```Chat pile 400 x 600 ft 20-25 ft hlgh```	Reclamation
		Do		3	4097750N	344880E	do		Taillngs pond 55 acres does not retain water contains fine material susceptible to wind transport	Revegetation
$\stackrel{\rightharpoonup}{\bullet}$	T 355	R 24E	$\sec 10$	4	4097625N,	343470 E	Ballard Mane		Tailings pond, 50×730 ft only partıally filled part of large chat reclamation operation	None
		Do		5	4097650N,	343425 E	do		Tailings pond area 58 acres composed of saturated fine materıal from chat reclamation operation	do
		Do		6	4097840N,	343430 E	do		Tallings pond area 85 acres partially filled with groon_sh-bl_e water part of chat reclamation operation	do
		Do		7	4097880 N,	$343320 E$	do		Small tailings pond containing greenısh water part of chat reclamation operation breached and connects with pond \#6	do

TABLE C-3 - Chat Piles and Taılıngs Ponds--Continued

	ocat-1		Site Number	UTM ${ }^{1}$ CoorZone	$\begin{aligned} & \text { dınates } \\ & 15 \end{aligned}$	Name	Size and Present Condition	Suggested Remedial Action
T 35 S	R 24E	sec 10	8	4097830 N	343240 E	Ballard Mine	Tailings pond area 23 acres contalns green-ish-blue water part of chat reclamation operation	None
	Do		9	4097800N,	343125E	Shanks Mıne	Tailings pond area 07 acres partially filled iron stalned	Reclamation
	Do		10	4097700 N	342600E	Clark Mine	```Tailings pond area 37 acres partially filled with clear shallow water```	Revegetation
	Do		11	4097600N,	342680E	Clark Mine/ Slaughter Mıne/ Ballard Mine	```Chat pile irregularly shaped remnant of large pile```	Reclamatıon
	Do		12	4097550N,	343150 E	Ballard Mıne/ Shanks Mıne	Chat pile irregularly shaped remnant of a large pile at the site of Ballard Mill now being reclaimed for chat	Continued reclamation
	Do		13	4097100N,	343230 E	$\begin{aligned} & \text { Ballard } \\ & \text { Mıne } \end{aligned}$	Tallings pond area 87 acres small amount of water in edsc ena remainder composed of dry fine material susceptible to wind erosion	Revegetation
T 35S	R 24E	sec 7	14	4097040N	337140 E	Barr Mane	Dry tallings pond, area 16 acres filled with fine material susceptible to wind erosion	do

TABLE C-3 - Chat Pıles and Tailings Ponds--Continued

PLATE I-C UNDERGROUND MINES AND SHAFTS

EXPLANATION
|APPROXIMATE EXTENT OF UNDERGROUND MINING
MINE SHAFT
[77 AREA OF CLOSELY SPACED MINE SHAFTS (NUMBER INDICATES QUANTITY)

PLAT: II-C OPEN SHAFTS, PITS AND SUBSIDENCES
EXPLANATION
OPEN SHAFT (NUMBER REFERS TO INFORMATION IN TABLE C I)
(3) LARGE COLLAPSED SHAFT
(x) OPEN PIT MINE
Q1 MINE SUBSIOENCE (NUMBER REFERS TO INFORMATION IN TABLE C 2)
SMALL mINE SUBSIDENCE

- REPORT OF PAST MINE SUBSIDENCE
r) ADIT
(.) AREA OF CLOSELY SPACED MINE HAZARDS _

1 MODIFIED AFTER U S GEOLOGICAL SURVEY BASE MAPS BAXTER SPRINGS KANSAS QUADRANGLE 1959 PHOTOREVISED 1978 DRAFTED BY DARRELL 1 DREW 1983
1
n

PLATE II-C OPEN SHAFTS PITS AND SUBSIDENCES BAXTER SPRINGS QUADRANGLE KANSAS by James r mccauley 1983 kansas geologital survey the university of kansas LaWRENCE KANSAS
prepared under u s bureau of mines CONTRACT NO JOl00131


```
PlATE III-C MINE AND MILL WASTE
1
    LANATIOI
-,' CHAT COVERED AREA
7 EMBANKMENT OF FORMER TAILINGS TO INFORMATION IN TABLE C 3)
```


MODIFIED AFTER U S GEOLOGICAL SURVEY BASE MAPS BAXTER SPRINGS KANSAS QUADRANGLE 1959

PHOTOREVISED 1978
DRAFTED BY DARRELL L DREW 1983

PLATE III-C MINE AND MILL WASTE BAXTER SPRINGS QUADRANGLE KANSAS by James r mccauley 1983

KANSAS GEOLOGICAL SURVEY THE UNIVERSITY OF KANSAS LAWRENCE KANSAS
PREPARED UNDER U S BUREAU OF MINES
CONTRACT NO JO100131

[^0]: ${ }^{1}$ Geologist Kansas Geological Survey
 ${ }^{2}$ Geologist Chief Mineral Resources Section Kansas Geolocical Survey
 ${ }^{3}$ Engine r_{1} ng Geologist Kansas Geological Survey

[^1]: ${ }^{1}$ (UTM) Universal Transverse Mercator

[^2]: ${ }^{1}$ (UTM) Unıversal Transverse Mercator

[^3]: ${ }^{1}$ (UTM) Universal Transverse Mercator

